Conformational regulation to realize modifiable ESIPT (excited-state intramolecular proton transfer) through intermolecular interactions†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shao-Zhe Yi, Bao-Ning Li, Wen He and Mei Pan
{"title":"Conformational regulation to realize modifiable ESIPT (excited-state intramolecular proton transfer) through intermolecular interactions†","authors":"Shao-Zhe Yi, Bao-Ning Li, Wen He and Mei Pan","doi":"10.1039/D5QM00012B","DOIUrl":null,"url":null,"abstract":"<p >Regulating molecular conformation changes is crucial yet challenging for manipulating multiple-responsive emissions in excited-state intramolecular proton transfer (ESIPT) materials. In this work, we explored the specific emission regulation of a dual-ESIPT-active molecule, BDIBD (2,5-bis(4,5-diphenyl-1<em>H</em>-imidazol-2-yl)benzene-1,4-diol), by subtly controlling the ground and excited states through different crystallization conformations. Notably, the crystals obtained in dimethylformamide (BDIBD–DMF) and methanol (BDIBD–MeOH) exhibited a single emission band, corresponding to the green and red emission from the keto<small><sup>1st</sup></small> and keto<small><sup>2nd</sup></small> excited states, respectively, while the crystals obtained in acetone (BDIBD–ACE) displayed dual emissions from both states, resulting in an overall yellow color. A comprehensive theoretical study verified that the modified intermolecular interactions, due to different crystallization conformations, regulated emissions by affecting the energy barrier of dual-ESIPT processes. The above results provide a concrete understanding of the regulation of excited-state emissions through ground-state conformational changes in ESIPT processes, as well as unique insights into the design and application of novel ESIPT emission materials.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 7","pages":" 1181-1188"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00012b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00012b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating molecular conformation changes is crucial yet challenging for manipulating multiple-responsive emissions in excited-state intramolecular proton transfer (ESIPT) materials. In this work, we explored the specific emission regulation of a dual-ESIPT-active molecule, BDIBD (2,5-bis(4,5-diphenyl-1H-imidazol-2-yl)benzene-1,4-diol), by subtly controlling the ground and excited states through different crystallization conformations. Notably, the crystals obtained in dimethylformamide (BDIBD–DMF) and methanol (BDIBD–MeOH) exhibited a single emission band, corresponding to the green and red emission from the keto1st and keto2nd excited states, respectively, while the crystals obtained in acetone (BDIBD–ACE) displayed dual emissions from both states, resulting in an overall yellow color. A comprehensive theoretical study verified that the modified intermolecular interactions, due to different crystallization conformations, regulated emissions by affecting the energy barrier of dual-ESIPT processes. The above results provide a concrete understanding of the regulation of excited-state emissions through ground-state conformational changes in ESIPT processes, as well as unique insights into the design and application of novel ESIPT emission materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信