Maximising Tolerance to Disturbances via Combined Control-Actuation Optimisation for Robust Humanoid Robot Walking

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Akhil Sathuluri;Carlotta Sartore;Stefano Dafarra;Silvio Traversaro;Markus Zimmermann;Daniele Pucci
{"title":"Maximising Tolerance to Disturbances via Combined Control-Actuation Optimisation for Robust Humanoid Robot Walking","authors":"Akhil Sathuluri;Carlotta Sartore;Stefano Dafarra;Silvio Traversaro;Markus Zimmermann;Daniele Pucci","doi":"10.1109/LRA.2025.3549660","DOIUrl":null,"url":null,"abstract":"Combined optimisation of various robot subsystems as a co-design problem has been shown to identify performant robots. However, classical optimisation methods result in point-optimum solutions that may not ensure robust performance and physical feasibility, i.e., the existence of components with specifications matching the computed optimum value. To address this problem, we present a set-based robust co-design optimisation strategy to maximise disturbance tolerance. Instead of identifying a single point-optimum solution, a so-called <italic>solution space</i> evaluates the combination of the largest design space that delivers the necessary performance while being robust to the largest set of disturbances. The utility of the proposed approach is demonstrated via a computational design study of the ergoCub robot. This study focuses on the robots' walking performance, illustrating (1) improvement in task success considering at least 3 times larger magnitudes of disturbances, (2) identifying a set instead of a point-solution in the design-disturbances space, and (3) improving standardisation of the joint actuation design.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4348-4355"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10918820","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10918820/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Combined optimisation of various robot subsystems as a co-design problem has been shown to identify performant robots. However, classical optimisation methods result in point-optimum solutions that may not ensure robust performance and physical feasibility, i.e., the existence of components with specifications matching the computed optimum value. To address this problem, we present a set-based robust co-design optimisation strategy to maximise disturbance tolerance. Instead of identifying a single point-optimum solution, a so-called solution space evaluates the combination of the largest design space that delivers the necessary performance while being robust to the largest set of disturbances. The utility of the proposed approach is demonstrated via a computational design study of the ergoCub robot. This study focuses on the robots' walking performance, illustrating (1) improvement in task success considering at least 3 times larger magnitudes of disturbances, (2) identifying a set instead of a point-solution in the design-disturbances space, and (3) improving standardisation of the joint actuation design.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信