AeroHaptix: A Wearable Vibrotactile Feedback System for Enhancing Collision Avoidance in UAV Teleoperation

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Bingjian Huang;Zhecheng Wang;Qilong Cheng;Siyi Ren;Hanfeng Cai;Antonio Alvarez Valdivia;Karthik Mahadevan;Daniel Wigdor
{"title":"AeroHaptix: A Wearable Vibrotactile Feedback System for Enhancing Collision Avoidance in UAV Teleoperation","authors":"Bingjian Huang;Zhecheng Wang;Qilong Cheng;Siyi Ren;Hanfeng Cai;Antonio Alvarez Valdivia;Karthik Mahadevan;Daniel Wigdor","doi":"10.1109/LRA.2025.3548866","DOIUrl":null,"url":null,"abstract":"Haptic feedback enhances collision avoidance by providing directional obstacle information to operators during unmanned aerial vehicle (UAV) teleoperation. However, such feedback is often rendered via haptic joysticks, which are unfamiliar to UAV operators and limited to single-direction force feedback. Additionally, the direct coupling between the input device and the feedback method diminishes operators' sense of control and induces oscillatory movements. To overcome these limitations, we propose AeroHaptix, a wearable haptic feedback system that uses spatial vibrations to simultaneously communicate multiple obstacle directions to operators, without interfering with their input control. The layout of vibrotactile actuators was optimized via a perceptual study to eliminate perceptual biases and achieve uniform spatial coverage. A novel rendering algorithm, MultiCBF, extended control barrier functions to support multi-directional feedback. Our system evaluation showed that compared to a no-feedback condition, AeroHaptix effectively reduced the number of collisions and input disagreement. Furthermore, operators reported that AeroHaptix was more helpful than force feedback, with improved situational awareness and comparable workload.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4260-4267"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10916921/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Haptic feedback enhances collision avoidance by providing directional obstacle information to operators during unmanned aerial vehicle (UAV) teleoperation. However, such feedback is often rendered via haptic joysticks, which are unfamiliar to UAV operators and limited to single-direction force feedback. Additionally, the direct coupling between the input device and the feedback method diminishes operators' sense of control and induces oscillatory movements. To overcome these limitations, we propose AeroHaptix, a wearable haptic feedback system that uses spatial vibrations to simultaneously communicate multiple obstacle directions to operators, without interfering with their input control. The layout of vibrotactile actuators was optimized via a perceptual study to eliminate perceptual biases and achieve uniform spatial coverage. A novel rendering algorithm, MultiCBF, extended control barrier functions to support multi-directional feedback. Our system evaluation showed that compared to a no-feedback condition, AeroHaptix effectively reduced the number of collisions and input disagreement. Furthermore, operators reported that AeroHaptix was more helpful than force feedback, with improved situational awareness and comparable workload.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信