Wideband Continuous-Time MASH ADCs: Principles, Challenges, and Prospects

Ke Li;Liang Qi;Mingqiang Guo;Rui P. Martins;Sai-Weng Sin
{"title":"Wideband Continuous-Time MASH ADCs: Principles, Challenges, and Prospects","authors":"Ke Li;Liang Qi;Mingqiang Guo;Rui P. Martins;Sai-Weng Sin","doi":"10.1109/OJSSCS.2025.3543761","DOIUrl":null,"url":null,"abstract":"Continuous-time (CT) delta-sigma modulator (DSM) is a popular choice for its inherent aliasing and resistive input impedance characteristics. With the increased demands for wide-bandwidth (BW) and high-dynamic range (DR), multistage noise shaping (MASH) presents prominent benefits of high-order noise-shaping (NS) without being constrained by <inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula> loop stability issues. Recent literature on CT MASH DSM showed promising progress in overcoming the design challenges under wideband application, including signal and quantization leakage, analog-digital matching complexity, signal transfer function (STF) peaking, and high-speed excess loop delay (ELD) compensation. This review article introduces fundamental models and primary design considerations, then discusses the CT MASH DSM’s key challenges and corresponding solutions. Finally, we provide two implementation examples of this architecture with their highlights and challenges.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"5 ","pages":"104-115"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10892233","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10892233/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous-time (CT) delta-sigma modulator (DSM) is a popular choice for its inherent aliasing and resistive input impedance characteristics. With the increased demands for wide-bandwidth (BW) and high-dynamic range (DR), multistage noise shaping (MASH) presents prominent benefits of high-order noise-shaping (NS) without being constrained by $\Delta \Sigma $ loop stability issues. Recent literature on CT MASH DSM showed promising progress in overcoming the design challenges under wideband application, including signal and quantization leakage, analog-digital matching complexity, signal transfer function (STF) peaking, and high-speed excess loop delay (ELD) compensation. This review article introduces fundamental models and primary design considerations, then discusses the CT MASH DSM’s key challenges and corresponding solutions. Finally, we provide two implementation examples of this architecture with their highlights and challenges.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信