{"title":"Thor: A Non-Speculative Value Dependent Timing Side Channel Attack Exploiting Intel AMX","authors":"Farshad Dizani;Azam Ghanbari;Joshua Kalyanapu;Darsh Asher;Samira Mirbagher Ajorpaz","doi":"10.1109/LCA.2025.3544989","DOIUrl":null,"url":null,"abstract":"The rise of on-chip accelerators signifies a major shift in computing, driven by the growing demands of artificial intelligence (AI) and specialized applications. These accelerators have gained popularity due to their ability to substantially boost performance, cut energy usage, lower total cost of ownership (TCO), and promote sustainability. Intel's Advanced Matrix Extensions (AMX) is one such on-chip accelerator, specifically designed for handling tasks involving large matrix multiplications commonly used in machine learning (ML) models, image processing, and other computational-heavy operations. In this paper, we introduce a novel value-dependent timing side-channel vulnerability in Intel AMX. By exploiting this weakness, we demonstrate a software-based, value-dependent timing side-channel attack capable of inferring the sparsity of neural network weights without requiring any knowledge of the confidence score, privileged access or physical proximity. Our attack method can fully recover the sparsity of weights assigned to 64 input elements within 50 minutes, which is 631% faster than the maximum leakage rate achieved in the Hertzbleed attack.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"69-72"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10906504/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of on-chip accelerators signifies a major shift in computing, driven by the growing demands of artificial intelligence (AI) and specialized applications. These accelerators have gained popularity due to their ability to substantially boost performance, cut energy usage, lower total cost of ownership (TCO), and promote sustainability. Intel's Advanced Matrix Extensions (AMX) is one such on-chip accelerator, specifically designed for handling tasks involving large matrix multiplications commonly used in machine learning (ML) models, image processing, and other computational-heavy operations. In this paper, we introduce a novel value-dependent timing side-channel vulnerability in Intel AMX. By exploiting this weakness, we demonstrate a software-based, value-dependent timing side-channel attack capable of inferring the sparsity of neural network weights without requiring any knowledge of the confidence score, privileged access or physical proximity. Our attack method can fully recover the sparsity of weights assigned to 64 input elements within 50 minutes, which is 631% faster than the maximum leakage rate achieved in the Hertzbleed attack.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.