MAFF-Net: Enhancing 3D Object Detection With 4D Radar via Multi-Assist Feature Fusion

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Xin Bi;Caien Weng;Panpan Tong;Baojie Fan;Arno Eichberge
{"title":"MAFF-Net: Enhancing 3D Object Detection With 4D Radar via Multi-Assist Feature Fusion","authors":"Xin Bi;Caien Weng;Panpan Tong;Baojie Fan;Arno Eichberge","doi":"10.1109/LRA.2025.3550707","DOIUrl":null,"url":null,"abstract":"Perception systems are crucial for the safe operation of autonomous vehicles, particularly for 3D object detection. While LiDAR-based methods are limited by adverse weather conditions, 4D radars offer promising all-weather capabilities. However, 4D radars introduce challenges such as extreme sparsity, noise, and limited geometric information in point clouds. To address these issues, we propose MAFF-Net, a novel multi-assist feature fusion network specifically designed for 3D object detection using a single 4D radar. We introduce a sparsity pillar attention (SPA) module to mitigate the effects of sparsity while ensuring a sufficient receptive field. Additionally, we design the cluster query cross-attention (CQCA) module, which uses velocity-based clustered features as queries in the cross-attention fusion process. This helps the network enrich feature representations of potential objects while reducing measurement errors caused by angular resolution and multipath effects. Furthermore, we develop a cylindrical denoising assist (CDA) module to reduce noise interference, improving the accuracy of 3D bounding box predictions. Experiments on the VoD and TJ4DRadSet datasets demonstrate that MAFF-Net achieves state-of-the-art performance, outperforming 16-layer LiDAR systems and operating at over 17.9 FPS, making it suitable for real-time detection in autonomous vehicles.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4284-4291"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10923711/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Perception systems are crucial for the safe operation of autonomous vehicles, particularly for 3D object detection. While LiDAR-based methods are limited by adverse weather conditions, 4D radars offer promising all-weather capabilities. However, 4D radars introduce challenges such as extreme sparsity, noise, and limited geometric information in point clouds. To address these issues, we propose MAFF-Net, a novel multi-assist feature fusion network specifically designed for 3D object detection using a single 4D radar. We introduce a sparsity pillar attention (SPA) module to mitigate the effects of sparsity while ensuring a sufficient receptive field. Additionally, we design the cluster query cross-attention (CQCA) module, which uses velocity-based clustered features as queries in the cross-attention fusion process. This helps the network enrich feature representations of potential objects while reducing measurement errors caused by angular resolution and multipath effects. Furthermore, we develop a cylindrical denoising assist (CDA) module to reduce noise interference, improving the accuracy of 3D bounding box predictions. Experiments on the VoD and TJ4DRadSet datasets demonstrate that MAFF-Net achieves state-of-the-art performance, outperforming 16-layer LiDAR systems and operating at over 17.9 FPS, making it suitable for real-time detection in autonomous vehicles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信