{"title":"MAFF-Net: Enhancing 3D Object Detection With 4D Radar via Multi-Assist Feature Fusion","authors":"Xin Bi;Caien Weng;Panpan Tong;Baojie Fan;Arno Eichberge","doi":"10.1109/LRA.2025.3550707","DOIUrl":null,"url":null,"abstract":"Perception systems are crucial for the safe operation of autonomous vehicles, particularly for 3D object detection. While LiDAR-based methods are limited by adverse weather conditions, 4D radars offer promising all-weather capabilities. However, 4D radars introduce challenges such as extreme sparsity, noise, and limited geometric information in point clouds. To address these issues, we propose MAFF-Net, a novel multi-assist feature fusion network specifically designed for 3D object detection using a single 4D radar. We introduce a sparsity pillar attention (SPA) module to mitigate the effects of sparsity while ensuring a sufficient receptive field. Additionally, we design the cluster query cross-attention (CQCA) module, which uses velocity-based clustered features as queries in the cross-attention fusion process. This helps the network enrich feature representations of potential objects while reducing measurement errors caused by angular resolution and multipath effects. Furthermore, we develop a cylindrical denoising assist (CDA) module to reduce noise interference, improving the accuracy of 3D bounding box predictions. Experiments on the VoD and TJ4DRadSet datasets demonstrate that MAFF-Net achieves state-of-the-art performance, outperforming 16-layer LiDAR systems and operating at over 17.9 FPS, making it suitable for real-time detection in autonomous vehicles.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4284-4291"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10923711/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Perception systems are crucial for the safe operation of autonomous vehicles, particularly for 3D object detection. While LiDAR-based methods are limited by adverse weather conditions, 4D radars offer promising all-weather capabilities. However, 4D radars introduce challenges such as extreme sparsity, noise, and limited geometric information in point clouds. To address these issues, we propose MAFF-Net, a novel multi-assist feature fusion network specifically designed for 3D object detection using a single 4D radar. We introduce a sparsity pillar attention (SPA) module to mitigate the effects of sparsity while ensuring a sufficient receptive field. Additionally, we design the cluster query cross-attention (CQCA) module, which uses velocity-based clustered features as queries in the cross-attention fusion process. This helps the network enrich feature representations of potential objects while reducing measurement errors caused by angular resolution and multipath effects. Furthermore, we develop a cylindrical denoising assist (CDA) module to reduce noise interference, improving the accuracy of 3D bounding box predictions. Experiments on the VoD and TJ4DRadSet datasets demonstrate that MAFF-Net achieves state-of-the-art performance, outperforming 16-layer LiDAR systems and operating at over 17.9 FPS, making it suitable for real-time detection in autonomous vehicles.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.