Shuoqing Shi , Yufan Zhao , Haiou Yang , Xin Lin , Chewang Jia , Weidong Huang
{"title":"Improving impact toughness of aluminum alloy through scanning strategy during laser powder bed fusion","authors":"Shuoqing Shi , Yufan Zhao , Haiou Yang , Xin Lin , Chewang Jia , Weidong Huang","doi":"10.1016/j.msea.2025.148244","DOIUrl":null,"url":null,"abstract":"<div><div>An effective high-speed scanning remelting strategy has been proposed to improve the microstructure of AlSi10Mg alloy in laser powder bed fusion. The optimized microstructures enhance the resistance of crack initiation and propagation, resulting in an increase of ∼76.9 % in the impact toughness of the improved sample compared to the normal deposit. The laser scanning strategy applied in this work promotes the adaptability of aluminum alloy produced via additive manufacturing in dynamic load application scenarios.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"932 ","pages":"Article 148244"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092150932500468X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An effective high-speed scanning remelting strategy has been proposed to improve the microstructure of AlSi10Mg alloy in laser powder bed fusion. The optimized microstructures enhance the resistance of crack initiation and propagation, resulting in an increase of ∼76.9 % in the impact toughness of the improved sample compared to the normal deposit. The laser scanning strategy applied in this work promotes the adaptability of aluminum alloy produced via additive manufacturing in dynamic load application scenarios.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.