Crosslinking PDADMAC/PSS polyelectrolyte multilayer membranes for stability at high salinity

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Xiao Zhang , Antoine J.B. Kemperman , Henk Miedema , Esra te Brinke , Wiebe M. de Vos
{"title":"Crosslinking PDADMAC/PSS polyelectrolyte multilayer membranes for stability at high salinity","authors":"Xiao Zhang ,&nbsp;Antoine J.B. Kemperman ,&nbsp;Henk Miedema ,&nbsp;Esra te Brinke ,&nbsp;Wiebe M. de Vos","doi":"10.1016/j.memsci.2025.124007","DOIUrl":null,"url":null,"abstract":"<div><div>Polyelectrolyte multilayer (PEM) nanofiltration (NF) membranes based on PDADMAC (poly(diallyldimethylammoniumchloride)) and PSS (poly(sodium 4-styrenesulfonate)) are known for their high physical and chemical stability. However, under high salinity conditions, the stability of these membranes is compromised due to weakened electrostatic interactions, leading to increased permeability and decreased retention. This study addresses this challenge by crosslinking PDADMAC/PSS multilayers with the photosensitive, negatively charged crosslinker DAS (disodium 4,4’-diazidostilbene-2,2’-disulfonate tetrahydrate). Initially, this crosslinking is studied on model surfaces, demonstrating full stability against desorption by surfactants at high enough DAS concentrations (1 g·L<sup>-1</sup>) and at long enough UV exposure (10 minutes). Experiments on PEM membranes demonstrate that DAS crosslinking significantly enhanced the stability of PDADMAC/PSS membranes at high salinity, with no permeability increase or loss of selectivity observed up to 1.5 M NaCl, in contrast to non-crosslinked membranes showing a reversible 61% permeability increase and an irreversible loss in MgSO<sub>4</sub> retention of 15%. At 4 M NaCl, the permeability of non-crosslinked membranes increased by 300% versus 90% for crosslinked membranes, again indicating the improved stability of the latter. Crosslinking with DAS further allows tuning of the membrane properties, denser membranes are formed with a lower molecular weight cut-off (MWCO), from around 861 Da of non-crosslinked membranes to around 354 Da of membranes crosslinked with a low DAS concentration (1 g·L<sup>-1</sup>). DAS introduces negative charges (sulfonic acid groups) into the PEMs, changing the membrane charge from positive to highly negative, as evidenced by the high Na<sub>2</sub>SO<sub>4</sub> retention (∼95%) and low CaCl<sub>2</sub> retention (∼7%) of crosslinked membranes. This study demonstrates the potential of crosslinking with DAS to produce stable PDADMAC/PSS NF membranes with tunable selectivity for challenging separation processes in high-salinity environments.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"725 ","pages":"Article 124007"},"PeriodicalIF":8.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825003205","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyelectrolyte multilayer (PEM) nanofiltration (NF) membranes based on PDADMAC (poly(diallyldimethylammoniumchloride)) and PSS (poly(sodium 4-styrenesulfonate)) are known for their high physical and chemical stability. However, under high salinity conditions, the stability of these membranes is compromised due to weakened electrostatic interactions, leading to increased permeability and decreased retention. This study addresses this challenge by crosslinking PDADMAC/PSS multilayers with the photosensitive, negatively charged crosslinker DAS (disodium 4,4’-diazidostilbene-2,2’-disulfonate tetrahydrate). Initially, this crosslinking is studied on model surfaces, demonstrating full stability against desorption by surfactants at high enough DAS concentrations (1 g·L-1) and at long enough UV exposure (10 minutes). Experiments on PEM membranes demonstrate that DAS crosslinking significantly enhanced the stability of PDADMAC/PSS membranes at high salinity, with no permeability increase or loss of selectivity observed up to 1.5 M NaCl, in contrast to non-crosslinked membranes showing a reversible 61% permeability increase and an irreversible loss in MgSO4 retention of 15%. At 4 M NaCl, the permeability of non-crosslinked membranes increased by 300% versus 90% for crosslinked membranes, again indicating the improved stability of the latter. Crosslinking with DAS further allows tuning of the membrane properties, denser membranes are formed with a lower molecular weight cut-off (MWCO), from around 861 Da of non-crosslinked membranes to around 354 Da of membranes crosslinked with a low DAS concentration (1 g·L-1). DAS introduces negative charges (sulfonic acid groups) into the PEMs, changing the membrane charge from positive to highly negative, as evidenced by the high Na2SO4 retention (∼95%) and low CaCl2 retention (∼7%) of crosslinked membranes. This study demonstrates the potential of crosslinking with DAS to produce stable PDADMAC/PSS NF membranes with tunable selectivity for challenging separation processes in high-salinity environments.

Abstract Image

交联 PDADMAC/PSS 聚电解质多层膜,实现高盐度下的稳定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信