Junaid Aslam , Muhammad Ahsan Waseem , Yibo Wu , Weiwei Sun , Yong Wang
{"title":"Recent developments in covalent Triazine frameworks for Lithium-ion and Lithium-sulfur batteries","authors":"Junaid Aslam , Muhammad Ahsan Waseem , Yibo Wu , Weiwei Sun , Yong Wang","doi":"10.1016/j.cis.2025.103479","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating demand for sustainable energy storage solutions has spurred significant research into materials that can efficiently store and convert energy. Among these, Covalent Triazine Frameworks (CTFs) have emerged as a promising class of two-dimensional nanomaterials due to their unique properties which includes permanent porosity, abundant active sites, exceptional stability and structural diversity. This review examines the role of CTFs in enhancing the performance of electrochemical energy storage devices, particularly in LIBs and LSBs as electrode materials. Despite the advantages of CTFs based electrode materials, such as their lightweight nature, design flexibility, and sustainability, they often suffer from low ionic conductivity and durability issues. This review examines recent advancements and design approaches focused on enhancing the electrochemical performance of CTF-based electrodes for lithium-ion (LIBs) and lithium‑sulfur (LSBs) batteries. It also addresses the major challenges that limit the effectiveness of CTFs in energy storage applications and suggests potential strategies for overcoming these obstacles. The primary aim of this review is to offer a thorough and detailed overview of the current state of research on CTFs. By critically analyzing existing work and highlighting future research directions, this review intends to support the advancement of CTF-based technologies in pursuit of more efficient and sustainable energy storage solutions.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"341 ","pages":"Article 103479"},"PeriodicalIF":15.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625000909","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating demand for sustainable energy storage solutions has spurred significant research into materials that can efficiently store and convert energy. Among these, Covalent Triazine Frameworks (CTFs) have emerged as a promising class of two-dimensional nanomaterials due to their unique properties which includes permanent porosity, abundant active sites, exceptional stability and structural diversity. This review examines the role of CTFs in enhancing the performance of electrochemical energy storage devices, particularly in LIBs and LSBs as electrode materials. Despite the advantages of CTFs based electrode materials, such as their lightweight nature, design flexibility, and sustainability, they often suffer from low ionic conductivity and durability issues. This review examines recent advancements and design approaches focused on enhancing the electrochemical performance of CTF-based electrodes for lithium-ion (LIBs) and lithium‑sulfur (LSBs) batteries. It also addresses the major challenges that limit the effectiveness of CTFs in energy storage applications and suggests potential strategies for overcoming these obstacles. The primary aim of this review is to offer a thorough and detailed overview of the current state of research on CTFs. By critically analyzing existing work and highlighting future research directions, this review intends to support the advancement of CTF-based technologies in pursuit of more efficient and sustainable energy storage solutions.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.