Two-dimensional nanozyme nanoarchitectonics customized electrochemical bio diagnostics and lab-on-chip devices for biomarker detection

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL
Thenmozhi Rajarathinam , Sivaguru Jayaraman , Chang-Seok Kim , Jang-Hee Yoon , Seung-Cheol Chang
{"title":"Two-dimensional nanozyme nanoarchitectonics customized electrochemical bio diagnostics and lab-on-chip devices for biomarker detection","authors":"Thenmozhi Rajarathinam ,&nbsp;Sivaguru Jayaraman ,&nbsp;Chang-Seok Kim ,&nbsp;Jang-Hee Yoon ,&nbsp;Seung-Cheol Chang","doi":"10.1016/j.cis.2025.103474","DOIUrl":null,"url":null,"abstract":"<div><div>Recent developments in nanomaterials and nanotechnology have advanced biosensing research. Two-dimensional (2D) nanomaterials or nanozymes, such as metal oxides, graphene and its derivatives, transition metal dichalcogenides, metal-organic frameworks, carbon-organic frameworks and MXenes, have garnered substantial attention in recent years owing to their unique properties, including high surface area, excellent electrical conductivity, and mechanical flexibility. Moreover, 2D nanozymes exhibit intrinsic enzyme-mimicking properties, including those of peroxidase, oxidase, catalase, and superoxide dismutase, making them well-suited for detecting biomarkers of interest and developing bio diagnostics at the point-of-care. Since 2D nanosystems offer ultra-high sensitivity, label-free detection, and real-time analysis, point-of-care testing and multiplexed biomarker detection, the demand is growing. Additionally, their biocompatibility and scalable fabrication make them cost-effective for widespread adoption. This review discusses the advantages of 2D nanozymes and their recent advancements in biosensing applications. This review summarizes the latest developments in 2D nanozymes, focusing on their synthesis, biocatalytic capabilities, and advancements in developing bio diagnostics and lab-on-chip devices for detecting cancer and non-cancer biomarkers. In addition, existing challenges and prospects in 2D nanozyme-based biosensors are identified, highlighting their biosensing potential and advocating for their expanded application in bio diagnostics and lab-on-chip devices.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"341 ","pages":"Article 103474"},"PeriodicalIF":15.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625000855","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent developments in nanomaterials and nanotechnology have advanced biosensing research. Two-dimensional (2D) nanomaterials or nanozymes, such as metal oxides, graphene and its derivatives, transition metal dichalcogenides, metal-organic frameworks, carbon-organic frameworks and MXenes, have garnered substantial attention in recent years owing to their unique properties, including high surface area, excellent electrical conductivity, and mechanical flexibility. Moreover, 2D nanozymes exhibit intrinsic enzyme-mimicking properties, including those of peroxidase, oxidase, catalase, and superoxide dismutase, making them well-suited for detecting biomarkers of interest and developing bio diagnostics at the point-of-care. Since 2D nanosystems offer ultra-high sensitivity, label-free detection, and real-time analysis, point-of-care testing and multiplexed biomarker detection, the demand is growing. Additionally, their biocompatibility and scalable fabrication make them cost-effective for widespread adoption. This review discusses the advantages of 2D nanozymes and their recent advancements in biosensing applications. This review summarizes the latest developments in 2D nanozymes, focusing on their synthesis, biocatalytic capabilities, and advancements in developing bio diagnostics and lab-on-chip devices for detecting cancer and non-cancer biomarkers. In addition, existing challenges and prospects in 2D nanozyme-based biosensors are identified, highlighting their biosensing potential and advocating for their expanded application in bio diagnostics and lab-on-chip devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信