{"title":"A variable-step, structure-preserving and linear fully discrete scheme for the two-mode phase-field crystal model with face-centered-cubic ordering","authors":"Yingying Xie , Qi Li , Liquan Mei , Weilong Wang","doi":"10.1016/j.cnsns.2025.108766","DOIUrl":null,"url":null,"abstract":"<div><div>Combining the stabilized scalar auxiliary variable approach and the variable-step second-order backward difference formula, an adaptive time-stepping scheme is proposed for the two-mode phase-field crystal model with face-centered-cubic ordering. Specifically, introduce an auxiliary variable to handle the nonlinear term and obtain a new equivalent system, then perform a variable-step second-order approximation on the phase-field variable and a variable-step first-order approximation on the auxiliary variable, that is crucial for proving energy stability. Despite employing a low-order approximation for the auxiliary variable, as long as mild constraints are placed on the constant within this auxiliary variable, the second-order temporal accuracy of the phase-field variable will remain unaffected. By utilizing the boundedness of the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> norm for the numerical solution of the phase-field variable on nonuniform temporal grids, this paper performs a thorough error analysis of the fully discrete scheme. Some numerical simulations are conducted to verify the temporal accuracy, mass conservation, and energy dissipation. Additionally, to balance the efficiency and accuracy of the numerical experiments, we have selected an appropriate time-adaptive strategy for long-term simulations of phase transition behavior and crystal growth behavior of the phase-field variable.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"146 ","pages":"Article 108766"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425001777","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Combining the stabilized scalar auxiliary variable approach and the variable-step second-order backward difference formula, an adaptive time-stepping scheme is proposed for the two-mode phase-field crystal model with face-centered-cubic ordering. Specifically, introduce an auxiliary variable to handle the nonlinear term and obtain a new equivalent system, then perform a variable-step second-order approximation on the phase-field variable and a variable-step first-order approximation on the auxiliary variable, that is crucial for proving energy stability. Despite employing a low-order approximation for the auxiliary variable, as long as mild constraints are placed on the constant within this auxiliary variable, the second-order temporal accuracy of the phase-field variable will remain unaffected. By utilizing the boundedness of the norm for the numerical solution of the phase-field variable on nonuniform temporal grids, this paper performs a thorough error analysis of the fully discrete scheme. Some numerical simulations are conducted to verify the temporal accuracy, mass conservation, and energy dissipation. Additionally, to balance the efficiency and accuracy of the numerical experiments, we have selected an appropriate time-adaptive strategy for long-term simulations of phase transition behavior and crystal growth behavior of the phase-field variable.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.