{"title":"Swarm-intelligence-based value iteration for optimal regulation of continuous-time nonlinear systems","authors":"Ding Wang, Qinna Hu, Ao Liu, Junfei Qiao","doi":"10.1016/j.swevo.2025.101913","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, a swarm-intelligence-based value iteration (VI) algorithm is constructed to resolve the optimal control issue for continuous-time (CT) nonlinear systems. By leveraging the evolutionary concept of particle swarm optimization (PSO), the challenge of gradient vanishing is effectively overcome compared to traditional adaptive dynamic programming (ADP). Specifically, a PSO-based action network is implemented to perform policy improvement, eliminating the reliance on gradient information. Furthermore, within the ADP framework, the swarm-intelligence-based VI algorithm for CT systems is developed to address the challenges associated with constraints of initial admissible conditions and the difficulty of selecting probing signals in the traditional policy iteration method. The theoretical analysis is provided to show the convergence of the developed VI algorithm and the stability of the closed-loop system, respectively. Finally, under affine and non-affine backgrounds, two simulations are conducted to demonstrate the effectiveness and optimality of the established swarm-intelligence-based VI scheme for CT systems.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"95 ","pages":"Article 101913"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225000719","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a swarm-intelligence-based value iteration (VI) algorithm is constructed to resolve the optimal control issue for continuous-time (CT) nonlinear systems. By leveraging the evolutionary concept of particle swarm optimization (PSO), the challenge of gradient vanishing is effectively overcome compared to traditional adaptive dynamic programming (ADP). Specifically, a PSO-based action network is implemented to perform policy improvement, eliminating the reliance on gradient information. Furthermore, within the ADP framework, the swarm-intelligence-based VI algorithm for CT systems is developed to address the challenges associated with constraints of initial admissible conditions and the difficulty of selecting probing signals in the traditional policy iteration method. The theoretical analysis is provided to show the convergence of the developed VI algorithm and the stability of the closed-loop system, respectively. Finally, under affine and non-affine backgrounds, two simulations are conducted to demonstrate the effectiveness and optimality of the established swarm-intelligence-based VI scheme for CT systems.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.