Fully consistent lowest-order finite element methods for generalised Stokes flows with variable viscosity

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Felipe Galarce , Douglas R.Q. Pacheco
{"title":"Fully consistent lowest-order finite element methods for generalised Stokes flows with variable viscosity","authors":"Felipe Galarce ,&nbsp;Douglas R.Q. Pacheco","doi":"10.1016/j.camwa.2025.03.013","DOIUrl":null,"url":null,"abstract":"<div><div>In finite element methods for incompressible flows, the most popular approach to allow equal-order velocity-pressure pairs are residual-based stabilisations. When using first-order elements, however, the viscous part of the residual cannot be approximated, which often degrades accuracy. For constant viscosity, or by assuming a Lipschitz condition on the viscosity field, we can construct stabilisation methods that fully approximate the residual, regardless of the polynomial order of the finite element spaces. This work analyses and tests two variants of such a fully consistent approach, with the generalised Stokes system as a model problem. We prove unique solvability and derive expressions for the stabilisation parameter, generalising some classical results for constant viscosity. Numerical results illustrate how our method completely eliminates the spurious pressure boundary layers typically induced by low-order PSPG-like stabilisations.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"188 ","pages":"Pages 40-49"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001087","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In finite element methods for incompressible flows, the most popular approach to allow equal-order velocity-pressure pairs are residual-based stabilisations. When using first-order elements, however, the viscous part of the residual cannot be approximated, which often degrades accuracy. For constant viscosity, or by assuming a Lipschitz condition on the viscosity field, we can construct stabilisation methods that fully approximate the residual, regardless of the polynomial order of the finite element spaces. This work analyses and tests two variants of such a fully consistent approach, with the generalised Stokes system as a model problem. We prove unique solvability and derive expressions for the stabilisation parameter, generalising some classical results for constant viscosity. Numerical results illustrate how our method completely eliminates the spurious pressure boundary layers typically induced by low-order PSPG-like stabilisations.
粘性可变的广义斯托克斯流的完全一致的最低阶有限元方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信