Mixed spectral element method combined with second-order time stepping schemes for a two-dimensional nonlinear fourth-order fractional diffusion equation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jiarui Wang, Yining Yang, Hong Li, Yang Liu
{"title":"Mixed spectral element method combined with second-order time stepping schemes for a two-dimensional nonlinear fourth-order fractional diffusion equation","authors":"Jiarui Wang,&nbsp;Yining Yang,&nbsp;Hong Li,&nbsp;Yang Liu","doi":"10.1016/j.camwa.2025.03.015","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, a mixed spectral element method combined with second-order time stepping schemes for solving a two-dimensional nonlinear fourth-order fractional diffusion equation is constructed. For formulating an efficient numerical scheme, an auxiliary function is introduced to transform the fourth-order fractional system into a low-order coupled system, then the time direction is discretized by second-order FBT-<em>θ</em> schemes, and the spatial direction is approximated using the Legendre mixed spectral element method (LMSEM). The stability and the optimal error estimate with <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>}</mo></mrow></msup><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup><mo>)</mo></math></span> for the fully discrete scheme are derived, where <em>τ</em> stands for the time step size, <em>h</em> denotes the space step size, <em>N</em> indicates the degree of the polynomial, and <em>r</em> represents the order of Sobolev space. Finally, some numerical tests are carried out to verify the theory results and the effectiveness of the developed algorithm.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"188 ","pages":"Pages 1-18"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001105","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a mixed spectral element method combined with second-order time stepping schemes for solving a two-dimensional nonlinear fourth-order fractional diffusion equation is constructed. For formulating an efficient numerical scheme, an auxiliary function is introduced to transform the fourth-order fractional system into a low-order coupled system, then the time direction is discretized by second-order FBT-θ schemes, and the spatial direction is approximated using the Legendre mixed spectral element method (LMSEM). The stability and the optimal error estimate with O(τ2+hmin{N+1,r}Nr) for the fully discrete scheme are derived, where τ stands for the time step size, h denotes the space step size, N indicates the degree of the polynomial, and r represents the order of Sobolev space. Finally, some numerical tests are carried out to verify the theory results and the effectiveness of the developed algorithm.
二维非线性四阶分数扩散方程的混合谱元法与二阶时间步进方案相结合
本文构造了一种结合二阶时间步进格式的混合谱元法,用于求解二维非线性四阶分数阶扩散方程。为了形成有效的数值格式,引入辅助函数将四阶分数阶系统转换为低阶耦合系统,然后采用二阶FBT-θ格式对时间方向进行离散,利用Legendre混合谱元法(LMSEM)对空间方向进行近似。导出了全离散格式的稳定性和最优误差估计(τ2+hmin ({N+1,r}N−r)),其中τ表示时间步长,h表示空间步长,N表示多项式度,r表示Sobolev空间阶数。最后进行了数值试验,验证了理论结果和算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信