Upcycling anaerobic digestion streams into feed-grade protein for increased environmental sustainability

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
Hadis Marami , Sahar Khademi , Shahin Rafiee , Hossein Mobli , Morten Birkved , He Li , Irini Angelidaki , Benyamin Khoshnevisan
{"title":"Upcycling anaerobic digestion streams into feed-grade protein for increased environmental sustainability","authors":"Hadis Marami ,&nbsp;Sahar Khademi ,&nbsp;Shahin Rafiee ,&nbsp;Hossein Mobli ,&nbsp;Morten Birkved ,&nbsp;He Li ,&nbsp;Irini Angelidaki ,&nbsp;Benyamin Khoshnevisan","doi":"10.1016/j.rser.2025.115638","DOIUrl":null,"url":null,"abstract":"<div><div>Biogas plants have long been recognized as well-established systems for converting waste into energy and organic fertilizers. However, biogas plants are expected to go beyond their primary functions to enhance the sustainability gains from the circular bioeconomy. Carbon (CO<sub>2</sub> and CH<sub>4</sub>) and nitrogen streams from anaerobic digestion (AD) facilities can be converted into higher-value products, such as microbial proteins (MPs). While two dominant pathways are known for MP production from AD streams, namely methane-oxidizing bacteria (MOB) and hydrogen-oxidizing bacteria (HOB), there is a lack of comprehensive research comparing these two pathways from an environmental sustainability viewpoint. Furthermore, the extent to which the environmental sustainability of MP production platforms depends on feedstock characteristics is yet to be scrutinized. To address the above-mentioned research questions, four biogas plants treating different types of biowaste were selected as case studies. Specifically, the effects of the C/N ratio in the input streams, biogas upgrading technologies (water scrubbing and biological biogas upgrading), and microbial platforms (HOB and MOB) were investigated. Environmental impacts were assessed using consequential life cycle assessment (CLCA), with Denmark as the spatial boundary and 2030 as the temporal boundary. Across all scenarios, the MOB pathway demonstrated superior environmental performance compared with the other pathways. Furthermore, the composition of the feedstock and quantity of biogas play key roles in the total environmental gains. Finally, the sources of uncertainty and opportunities for future improvements are identified to pave the way for land-independent feed-grade protein production using locally available biowastes.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"216 ","pages":"Article 115638"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125003119","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Biogas plants have long been recognized as well-established systems for converting waste into energy and organic fertilizers. However, biogas plants are expected to go beyond their primary functions to enhance the sustainability gains from the circular bioeconomy. Carbon (CO2 and CH4) and nitrogen streams from anaerobic digestion (AD) facilities can be converted into higher-value products, such as microbial proteins (MPs). While two dominant pathways are known for MP production from AD streams, namely methane-oxidizing bacteria (MOB) and hydrogen-oxidizing bacteria (HOB), there is a lack of comprehensive research comparing these two pathways from an environmental sustainability viewpoint. Furthermore, the extent to which the environmental sustainability of MP production platforms depends on feedstock characteristics is yet to be scrutinized. To address the above-mentioned research questions, four biogas plants treating different types of biowaste were selected as case studies. Specifically, the effects of the C/N ratio in the input streams, biogas upgrading technologies (water scrubbing and biological biogas upgrading), and microbial platforms (HOB and MOB) were investigated. Environmental impacts were assessed using consequential life cycle assessment (CLCA), with Denmark as the spatial boundary and 2030 as the temporal boundary. Across all scenarios, the MOB pathway demonstrated superior environmental performance compared with the other pathways. Furthermore, the composition of the feedstock and quantity of biogas play key roles in the total environmental gains. Finally, the sources of uncertainty and opportunities for future improvements are identified to pave the way for land-independent feed-grade protein production using locally available biowastes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信