Simplified prediction of settlements of shallow foundations caused by earthquake-induced excess pore water pressures

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Flora A , Elia S , Valtucci F , Lirer S
{"title":"Simplified prediction of settlements of shallow foundations caused by earthquake-induced excess pore water pressures","authors":"Flora A ,&nbsp;Elia S ,&nbsp;Valtucci F ,&nbsp;Lirer S","doi":"10.1016/j.soildyn.2025.109383","DOIUrl":null,"url":null,"abstract":"<div><div>Seismic actions are usually considered for their inertial effects on the built environment. However, additional effects may be caused by the volumetric-distortional coupling of soil behaviour: the fast cyclic shaking on saturated soils caused by earthquakes generates temporary undrained or quasi-undrained conditions and subsequent pore pressure variations that, if positive, reduce the effective stresses, eventually leading loose granular soils to liquefaction. Whatever the amount of seismically induced pore pressure build up, buildings on shallow foundations suffer settlements and tilts that may be extremely large when soils approach liquefaction, as demonstrated by several recent case histories. The paper proposes an equivalent elastic approach in effective stresses to predict the co-seismic (undrained) component of the seismically induced settlement of shallow foundations, which usually is the most relevant one, by considering the decrease of soil stiffness during the seismic event. The total settlement can be then estimated by adding the post-seismic (drained) component, also evaluated in this paper via a quite simple approach. Even though the equivalent elastic model is stretched into a highly non-linear soil behaviour range, especially when the soil is approaching liquefaction, the model considers the relevant capacity and demand factors and proved effective in simulating some centrifuge tests published in the literature. In the paper, the simplifying assumptions of the approach are clearly indicated, and their relevance discussed. It is argued that notwithstanding some limitations the model is physically based and therefore it allows for understanding and checking the relative relevance of all the parameters related to soil, foundation, and seismic action. Thus, it is a tool of possible interest in the design of shallow foundations in liquefaction-prone seismic areas.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"194 ","pages":"Article 109383"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125001769","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic actions are usually considered for their inertial effects on the built environment. However, additional effects may be caused by the volumetric-distortional coupling of soil behaviour: the fast cyclic shaking on saturated soils caused by earthquakes generates temporary undrained or quasi-undrained conditions and subsequent pore pressure variations that, if positive, reduce the effective stresses, eventually leading loose granular soils to liquefaction. Whatever the amount of seismically induced pore pressure build up, buildings on shallow foundations suffer settlements and tilts that may be extremely large when soils approach liquefaction, as demonstrated by several recent case histories. The paper proposes an equivalent elastic approach in effective stresses to predict the co-seismic (undrained) component of the seismically induced settlement of shallow foundations, which usually is the most relevant one, by considering the decrease of soil stiffness during the seismic event. The total settlement can be then estimated by adding the post-seismic (drained) component, also evaluated in this paper via a quite simple approach. Even though the equivalent elastic model is stretched into a highly non-linear soil behaviour range, especially when the soil is approaching liquefaction, the model considers the relevant capacity and demand factors and proved effective in simulating some centrifuge tests published in the literature. In the paper, the simplifying assumptions of the approach are clearly indicated, and their relevance discussed. It is argued that notwithstanding some limitations the model is physically based and therefore it allows for understanding and checking the relative relevance of all the parameters related to soil, foundation, and seismic action. Thus, it is a tool of possible interest in the design of shallow foundations in liquefaction-prone seismic areas.
地震引起的过大孔隙水压力导致浅层地基沉降的简化预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信