Rui Gao , Yee Man Loh , Kangsen Li , Rui Chen , Chen Jiang , Chi Fai Cheung , Chunjin Wang
{"title":"Study on the material removal mechanism of cemented carbide magnetic materials in magnetic field-assisted mass polishing","authors":"Rui Gao , Yee Man Loh , Kangsen Li , Rui Chen , Chen Jiang , Chi Fai Cheung , Chunjin Wang","doi":"10.1016/j.triboint.2025.110647","DOIUrl":null,"url":null,"abstract":"<div><div>Cemented carbides (WC-Co) are crucial in modern engineering due to their exceptional hardness, wear resistance, and toughness, making them ideal for various applications. Despite advancements in polishing techniques, the mechanisms for polishing WC-Co magnetic materials using magnetic field-assisted methods remain inadequately understood. This study addresses these gaps by investigating the material removal mechanism of WC-Co after electrical discharge machining (EDM) using the proposed magnetic field-assisted mass polishing (MAMP) method. A material removal distribution (MRD) model of different magnetic materials was developed to guide the experiments. Key findings include significant reductions in surface roughness, effective removal of oxide layers formed during EDM, and improved polishing uniformity and efficiency. The study also demonstrated the MAMP method’s ability to maintain the form integrity of structured surfaces. This research enhances the understanding of polishing mechanisms for magnetic materials and presents a viable method for improving the surface quality of WC-Co. This research provides valuable insights into the polishing mechanisms of magnetic materials using magnetic field-assisted polishing methods.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"208 ","pages":"Article 110647"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25001422","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cemented carbides (WC-Co) are crucial in modern engineering due to their exceptional hardness, wear resistance, and toughness, making them ideal for various applications. Despite advancements in polishing techniques, the mechanisms for polishing WC-Co magnetic materials using magnetic field-assisted methods remain inadequately understood. This study addresses these gaps by investigating the material removal mechanism of WC-Co after electrical discharge machining (EDM) using the proposed magnetic field-assisted mass polishing (MAMP) method. A material removal distribution (MRD) model of different magnetic materials was developed to guide the experiments. Key findings include significant reductions in surface roughness, effective removal of oxide layers formed during EDM, and improved polishing uniformity and efficiency. The study also demonstrated the MAMP method’s ability to maintain the form integrity of structured surfaces. This research enhances the understanding of polishing mechanisms for magnetic materials and presents a viable method for improving the surface quality of WC-Co. This research provides valuable insights into the polishing mechanisms of magnetic materials using magnetic field-assisted polishing methods.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.