Tingting Li , Tia J. Kowal , Jingyu Zhao , Liang Li , Qing Wang , Ke Ning , Chien-Hui Lo , Zhiquan Liu , Yingchun Shen , Jing Yu , Haiying Jin , Yang Sun
{"title":"Effect of brimonidine on retinal ganglion cell function by in vivo calcium imaging of optic nerve crush in mice","authors":"Tingting Li , Tia J. Kowal , Jingyu Zhao , Liang Li , Qing Wang , Ke Ning , Chien-Hui Lo , Zhiquan Liu , Yingchun Shen , Jing Yu , Haiying Jin , Yang Sun","doi":"10.1016/j.exer.2025.110355","DOIUrl":null,"url":null,"abstract":"<div><div>Brimonidine has shown neuroprotective effects in animal studies, but clinical trials failed to demonstrate effective endpoints. Here, we used a newly developed in vivo calcium imaging method to measure RGC function of brimonidine in mice optic nerve crush (ONC) models. To transduce RGCs in vivo, wild-type C57Bl/6j mice were treated with intravitreal AAV2-mSncg-jGCaMP7s, a live-cell Ca<sup>2+</sup> tracer. RGCs are defined as 10 subtypes according to different responses to UV light. Mice were treated with topical brimonidine or placebo three times daily for two weeks after ONC. The calcium signals of live-cell RGCs were measured with the Heidelberg cSLO system. Ganglion cell complex (GCC) thickness and IOP were examined at different timepoints after treatment. RGCs were counted after RBPMS immunostaining. Live calcium imaging showed ONC significantly decreased RGC number at 14 days post-ONC compared to controls. The topical brimonidine administration changed calcium signal responses of RGC to UV light in ONC mice. It showed brimonidine partly prevented the decrease of survival ON-RGCs percent after ONC. Single RGC analysis showed a lower conversion percent of ON-RGCs to OFF-RGCs with brimonidine administration after ONC. However, no significant differences in RGC survival, IOP or GCC thickness were noted between eyes treated with brimonidine or placebo. In the acute ONC mice model, in vivo calcium imaging revealed that brimonidine maintained the Ca<sup>2+</sup> activation of ON-RGCs to UV stimulation, inhibiting the conversion of survival ON-RGCs to OFF-RGCs. This indicates that ON-RGCs may be more resilient to acute optic nerve injury based on the calcium imaging method.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"255 ","pages":"Article 110355"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483525001265","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Brimonidine has shown neuroprotective effects in animal studies, but clinical trials failed to demonstrate effective endpoints. Here, we used a newly developed in vivo calcium imaging method to measure RGC function of brimonidine in mice optic nerve crush (ONC) models. To transduce RGCs in vivo, wild-type C57Bl/6j mice were treated with intravitreal AAV2-mSncg-jGCaMP7s, a live-cell Ca2+ tracer. RGCs are defined as 10 subtypes according to different responses to UV light. Mice were treated with topical brimonidine or placebo three times daily for two weeks after ONC. The calcium signals of live-cell RGCs were measured with the Heidelberg cSLO system. Ganglion cell complex (GCC) thickness and IOP were examined at different timepoints after treatment. RGCs were counted after RBPMS immunostaining. Live calcium imaging showed ONC significantly decreased RGC number at 14 days post-ONC compared to controls. The topical brimonidine administration changed calcium signal responses of RGC to UV light in ONC mice. It showed brimonidine partly prevented the decrease of survival ON-RGCs percent after ONC. Single RGC analysis showed a lower conversion percent of ON-RGCs to OFF-RGCs with brimonidine administration after ONC. However, no significant differences in RGC survival, IOP or GCC thickness were noted between eyes treated with brimonidine or placebo. In the acute ONC mice model, in vivo calcium imaging revealed that brimonidine maintained the Ca2+ activation of ON-RGCs to UV stimulation, inhibiting the conversion of survival ON-RGCs to OFF-RGCs. This indicates that ON-RGCs may be more resilient to acute optic nerve injury based on the calcium imaging method.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.