Ying Liu , Bingyan Ni , Ruotong Ru , Linlin Zhang , Hongfei Sun , Jianjun Liao , Cheng Li , Dexin Wang , Xiaodong Zhang , Wei Zhou
{"title":"Floated Bi4Ti3O12@MoS2 p-n heterojunction anti-fouling hydrogels for efficient seawater purification","authors":"Ying Liu , Bingyan Ni , Ruotong Ru , Linlin Zhang , Hongfei Sun , Jianjun Liao , Cheng Li , Dexin Wang , Xiaodong Zhang , Wei Zhou","doi":"10.1016/j.jece.2025.116265","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic treatment of seawater pollutants has far-reaching significance for marine conservation, but the recyclability in marine environments and their unavoidable threat from biofouling constrain their practical applications. Herein, a floated Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>@MoS<sub>2</sub> p-n heterojunction anti-fouling hydrogel (BMH) is fabricated through two-step hydrothermal method, where Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> nanoparticles (E<sub>g</sub>=3.1 eV) and flower-like MoS<sub>2</sub> (E<sub>g</sub>=1.76 eV) form p-n heterojunctions with a 2D-2D structure and package to a three-dimensional driver-responsive hydrogel consisting of poly (vinyl alcohol) (type 1799), tannic acid and N-isopropylacrylamide for marine environmental protection. Under light irradiation, the formation of a p-n heterojunction in BMH facilitates the generation of primary active species, namely ·OH and ·O<sub>2</sub><sup>-</sup>, thereby endowing the system with enhanced redox capability. Among them, 30 wt% BMH achieved the best removal efficiency of 98.2 % of 10 mg/L TC, which is 1.38 times that of pure nanoparticles Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>@MoS<sub>2</sub> 23.17 times that of the blank hydrogel. Simultaneously, the optimal bacterial attachment rate and anti-diatom attachment rate reach 99.3 % and 93.82 %, respectively, confirming the excellent antifouling properties of BMH. The degradation intermediates exhibit environmental friendliness, providing potential for further practical applications in seawater purification.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 3","pages":"Article 116265"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343725009613","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic treatment of seawater pollutants has far-reaching significance for marine conservation, but the recyclability in marine environments and their unavoidable threat from biofouling constrain their practical applications. Herein, a floated Bi4Ti3O12@MoS2 p-n heterojunction anti-fouling hydrogel (BMH) is fabricated through two-step hydrothermal method, where Bi4Ti3O12 nanoparticles (Eg=3.1 eV) and flower-like MoS2 (Eg=1.76 eV) form p-n heterojunctions with a 2D-2D structure and package to a three-dimensional driver-responsive hydrogel consisting of poly (vinyl alcohol) (type 1799), tannic acid and N-isopropylacrylamide for marine environmental protection. Under light irradiation, the formation of a p-n heterojunction in BMH facilitates the generation of primary active species, namely ·OH and ·O2-, thereby endowing the system with enhanced redox capability. Among them, 30 wt% BMH achieved the best removal efficiency of 98.2 % of 10 mg/L TC, which is 1.38 times that of pure nanoparticles Bi4Ti3O12@MoS2 23.17 times that of the blank hydrogel. Simultaneously, the optimal bacterial attachment rate and anti-diatom attachment rate reach 99.3 % and 93.82 %, respectively, confirming the excellent antifouling properties of BMH. The degradation intermediates exhibit environmental friendliness, providing potential for further practical applications in seawater purification.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.