Double S-scheme junction of BiVO4/g-C3N4/Bi2O3 toward efficiently removal formaldehyde under simulated full-spectrum irradiation: Study of the catalytic mechanisms and reaction pathway
Yuhang Wu , Ying Liu , Jianping He , Yiguo Su , Meiting Song
{"title":"Double S-scheme junction of BiVO4/g-C3N4/Bi2O3 toward efficiently removal formaldehyde under simulated full-spectrum irradiation: Study of the catalytic mechanisms and reaction pathway","authors":"Yuhang Wu , Ying Liu , Jianping He , Yiguo Su , Meiting Song","doi":"10.1016/j.jece.2025.116246","DOIUrl":null,"url":null,"abstract":"<div><div>The double S-scheme BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>O<sub>3</sub> photocatalytic functional junction was designed and synthesized to oxidize and decompose formaldehyde into CO<sub>2</sub> and H<sub>2</sub>O under simulated full-spectrum sunlight. BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>O<sub>3</sub>-80 % has excellent photocatalytic activity and high CO<sub>2</sub> selectivity. After 3 hours, the HCHO (500 ppm) degradation rate reached 97.72 % and the CO<sub>2</sub> selectivity reached 99.56 %. The photocatalytic mechanism was proposed through the photoelectrochemical performance test and active free radical test and density functional theory (DFT) calculation, that the photogenerated electrons between BiVO<sub>4</sub>-g-C<sub>3</sub>N<sub>4</sub> and Bi<sub>2</sub>O<sub>3</sub>-g-C<sub>3</sub>N<sub>4</sub> are transferred in a S-scheme path under the built-in electric field effect. This not only improves the separation and transfer efficiency of the photogenerated carriers, but also effectively inhibits its recombination; and a large number of photogenerated electrons gather on the conduction band of g-C<sub>3</sub>N<sub>4</sub>, and the holes remain in the valence bands of BiVO<sub>4</sub> and Bi<sub>2</sub>O<sub>3</sub>, respectively; and maintain the original strong redox ability of each unit catalyst. Therefore, a large amount of active free radicals •OH and •O<sub>2</sub><sup>-</sup> are generated, which helps to improve the photocatalytic formaldehyde degradation activity. This work provides a new double S-scheme catalytic junction design idea for improving the activity of photocatalytic materials and BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>O<sub>3</sub> is expected to be popularized and applied in the field of environmental purification in the future.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 3","pages":"Article 116246"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221334372500942X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The double S-scheme BiVO4/g-C3N4/Bi2O3 photocatalytic functional junction was designed and synthesized to oxidize and decompose formaldehyde into CO2 and H2O under simulated full-spectrum sunlight. BiVO4/g-C3N4/Bi2O3-80 % has excellent photocatalytic activity and high CO2 selectivity. After 3 hours, the HCHO (500 ppm) degradation rate reached 97.72 % and the CO2 selectivity reached 99.56 %. The photocatalytic mechanism was proposed through the photoelectrochemical performance test and active free radical test and density functional theory (DFT) calculation, that the photogenerated electrons between BiVO4-g-C3N4 and Bi2O3-g-C3N4 are transferred in a S-scheme path under the built-in electric field effect. This not only improves the separation and transfer efficiency of the photogenerated carriers, but also effectively inhibits its recombination; and a large number of photogenerated electrons gather on the conduction band of g-C3N4, and the holes remain in the valence bands of BiVO4 and Bi2O3, respectively; and maintain the original strong redox ability of each unit catalyst. Therefore, a large amount of active free radicals •OH and •O2- are generated, which helps to improve the photocatalytic formaldehyde degradation activity. This work provides a new double S-scheme catalytic junction design idea for improving the activity of photocatalytic materials and BiVO4/g-C3N4/Bi2O3 is expected to be popularized and applied in the field of environmental purification in the future.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.