Jie Chen , Yujia Li , Xiaofei Huo , Ziqiang Huang , Suyun Li , Wenyu Cao , Cuilan Zhou , Yang Xu
{"title":"Targeted suppression of BRD7 with BI-9564 prevents seizure behaviors in pentylenetetrazol and pilocarpine-induced mouse model of epilepsy","authors":"Jie Chen , Yujia Li , Xiaofei Huo , Ziqiang Huang , Suyun Li , Wenyu Cao , Cuilan Zhou , Yang Xu","doi":"10.1016/j.bbr.2025.115549","DOIUrl":null,"url":null,"abstract":"<div><div>Epilepsy is a serious neurological disorder, but its underlying cellular and molecular mechanisms remains incomplete. As a member of the bromodomain-containing protein (BCP) family, BRD7 has been implicated in a variety of cellular processes, including chromatin remodeling, transcriptional regulation, and cell cycle progression. However, the role of BRD7 in epilepsy in vivo is still poorly understood. In the present study, we found that pentylenetetrazole (PTZ)-induced epilepsy increased hippocampal BRD7, which was mainly localized in neurons. In addition, the enhanced expression of hippocampal BRD7 was normalized by using the anti-epilepsy drug valproic acid (VPA). Furthermore, we identified that the BRD7 inhibitor BI-9564 could dose dependently alleviated the seizure behavior in PTZ treated mice, which was also validated in pilocarpine mouse model. Mechanistically, the anti-seizure effect of BI- 9564 might be due to its negative-regulation of hippocampal TRPV4 that downregulated neuronal over-excitability. Importantly, BRD7 blockade retained its antiepileptic activity over chronic dosing that was not related to psychomotor or cognitive effects. To our knowledge, these results are the first evidence to demonstrate that BRD7 inhibitor can down-regulate neuronal over-excitation caused by epilepsy possible by regulating TRPV4. Targeting BRD7 through the development of selective inhibitors may lead to disease-modifying therapies that reduce seizure behavior.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"485 ","pages":"Article 115549"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432825001354","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is a serious neurological disorder, but its underlying cellular and molecular mechanisms remains incomplete. As a member of the bromodomain-containing protein (BCP) family, BRD7 has been implicated in a variety of cellular processes, including chromatin remodeling, transcriptional regulation, and cell cycle progression. However, the role of BRD7 in epilepsy in vivo is still poorly understood. In the present study, we found that pentylenetetrazole (PTZ)-induced epilepsy increased hippocampal BRD7, which was mainly localized in neurons. In addition, the enhanced expression of hippocampal BRD7 was normalized by using the anti-epilepsy drug valproic acid (VPA). Furthermore, we identified that the BRD7 inhibitor BI-9564 could dose dependently alleviated the seizure behavior in PTZ treated mice, which was also validated in pilocarpine mouse model. Mechanistically, the anti-seizure effect of BI- 9564 might be due to its negative-regulation of hippocampal TRPV4 that downregulated neuronal over-excitability. Importantly, BRD7 blockade retained its antiepileptic activity over chronic dosing that was not related to psychomotor or cognitive effects. To our knowledge, these results are the first evidence to demonstrate that BRD7 inhibitor can down-regulate neuronal over-excitation caused by epilepsy possible by regulating TRPV4. Targeting BRD7 through the development of selective inhibitors may lead to disease-modifying therapies that reduce seizure behavior.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.