Structure, function and catalytic mechanism of the carrageenan-sulfatases from the marine bacterium Zobellia galactanivorans DsijT

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Antonin Chevenier , Mathieu Fanuel , Ekaterina Sokolova , Diego Mico Latorre , Diane Jouanneau , Alexandra Jeudy , Aurélie Préchoux , Marie-Katherin Zühlke , Jürgen Bartel , Dörte Becher , Mirjam Czjzek , David Ropartz , Gurvan Michel , Elizabeth Ficko-Blean
{"title":"Structure, function and catalytic mechanism of the carrageenan-sulfatases from the marine bacterium Zobellia galactanivorans DsijT","authors":"Antonin Chevenier ,&nbsp;Mathieu Fanuel ,&nbsp;Ekaterina Sokolova ,&nbsp;Diego Mico Latorre ,&nbsp;Diane Jouanneau ,&nbsp;Alexandra Jeudy ,&nbsp;Aurélie Préchoux ,&nbsp;Marie-Katherin Zühlke ,&nbsp;Jürgen Bartel ,&nbsp;Dörte Becher ,&nbsp;Mirjam Czjzek ,&nbsp;David Ropartz ,&nbsp;Gurvan Michel ,&nbsp;Elizabeth Ficko-Blean","doi":"10.1016/j.carbpol.2025.123487","DOIUrl":null,"url":null,"abstract":"<div><div>Carrageenans are highly diverse sulfated galactans found in red seaweeds. They play various physiological roles within macroalgae, but also serve as carbon sources for heterotrophic marine bacteria living at their surface. Carrageenan sulfatases catalyze the removal of sulfate esters from the glycans to expose the saccharide chain for further enzymatic processing. In the marine flavobacterium <em>Zobellia galactanivorans</em>, three carrageenan sulfatase genes are localized within a carrageenan utilization locus, belonging to three distinct SulfAtlas S1 (formylglycine-dependent sulfatases) subfamilies (S1_19, <em>Zg</em>CgsA; S1_7, <em>Zg</em>CgsB1; and S1_17, <em>Zg</em>CgsC). In this study we combined several techniques to characterize the detailed desulfurylation steps in the catabolic pathway of carrageenan in this model marine bacterium. High resolution UHPLC-MS/MS sequencing of the reaction species provides precise chemical localization of the enzymatic activities for the three carrageenan sulfatases on carrageenan polysaccharides and oligosaccharides. High resolution structures of the S1_19 endo-/exo-lytic carrageenan sulfatase (<em>Zg</em>CgsA) in complex with oligocarrageenan products show substrate plasticity which involve enzyme and glycan conformational rearrangements. A sulfo-enzyme covalent-intermediate sheds light on the catalytic mechanism and highlights the unique chemistry of formylglycine, an essential post-translationally modified catalytic residue in the active site of S1 family sulfatases.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"358 ","pages":"Article 123487"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725002681","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Carrageenans are highly diverse sulfated galactans found in red seaweeds. They play various physiological roles within macroalgae, but also serve as carbon sources for heterotrophic marine bacteria living at their surface. Carrageenan sulfatases catalyze the removal of sulfate esters from the glycans to expose the saccharide chain for further enzymatic processing. In the marine flavobacterium Zobellia galactanivorans, three carrageenan sulfatase genes are localized within a carrageenan utilization locus, belonging to three distinct SulfAtlas S1 (formylglycine-dependent sulfatases) subfamilies (S1_19, ZgCgsA; S1_7, ZgCgsB1; and S1_17, ZgCgsC). In this study we combined several techniques to characterize the detailed desulfurylation steps in the catabolic pathway of carrageenan in this model marine bacterium. High resolution UHPLC-MS/MS sequencing of the reaction species provides precise chemical localization of the enzymatic activities for the three carrageenan sulfatases on carrageenan polysaccharides and oligosaccharides. High resolution structures of the S1_19 endo-/exo-lytic carrageenan sulfatase (ZgCgsA) in complex with oligocarrageenan products show substrate plasticity which involve enzyme and glycan conformational rearrangements. A sulfo-enzyme covalent-intermediate sheds light on the catalytic mechanism and highlights the unique chemistry of formylglycine, an essential post-translationally modified catalytic residue in the active site of S1 family sulfatases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信