Effect of lymphocyte miRNA expression on influenza vaccine-induced immunity

IF 4.5 3区 医学 Q2 IMMUNOLOGY
Iana H. Haralambieva , Tamar Ratishvili , Krista M. Goergen , Diane E. Grill , Whitney L. Simon , Jun Chen , Inna G. Ovsyannikova , Gregory A. Poland , Richard B. Kennedy
{"title":"Effect of lymphocyte miRNA expression on influenza vaccine-induced immunity","authors":"Iana H. Haralambieva ,&nbsp;Tamar Ratishvili ,&nbsp;Krista M. Goergen ,&nbsp;Diane E. Grill ,&nbsp;Whitney L. Simon ,&nbsp;Jun Chen ,&nbsp;Inna G. Ovsyannikova ,&nbsp;Gregory A. Poland ,&nbsp;Richard B. Kennedy","doi":"10.1016/j.vaccine.2025.127023","DOIUrl":null,"url":null,"abstract":"<div><div>Alterations of gene expression by miRNAs contribute substantially to genetic regulation and cellular functions. We conducted a comprehensive study in 53 individuals before and after seasonal inactivated influenza vaccine to characterize lymphocyte-specific miRNA expression (in purified B cells, CD4+ T cells, CD8+ T cells, and NK cells) and its effect on influenza vaccine-induced immune outcomes (hemagglutination inhibition antibody titers/HAI, viral neutralizing antibody titers /VNA, and memory B cell ELISPOT). Overall, we observed relatively stable miRNA expression before and after influenza vaccination. Statistical analysis uncovered three baseline miRNAs (miR-150-3p, miR-629-5p, and miR-4443) that were significantly correlated with influenza vaccine-induced immune outcomes in different cell types. Predictive modeling of influenza vaccine-induced HAI/VNA titers identified a set of specific baseline miRNAs in CD4<sup>+</sup> T cells as factors predictive of antibody responses. A pathway enrichment analysis on the putative target genes revealed several regulated signaling pathways and functions: TGF-β signaling, PI3K-Akt signaling, p53 signaling, MAPK signaling, TNF signaling, and C-type lectin receptor signaling, as well as cell adhesion and adherens junctions, and antiviral host response. In conclusion, our study offers evidence for the role of epigenetic modification (miRNAs) on influenza vaccine-induced immunity. After validation, identified miRNAs may serve as potential biomarkers of immune response after influenza vaccination.</div></div>","PeriodicalId":23491,"journal":{"name":"Vaccine","volume":"55 ","pages":"Article 127023"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264410X25003202","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alterations of gene expression by miRNAs contribute substantially to genetic regulation and cellular functions. We conducted a comprehensive study in 53 individuals before and after seasonal inactivated influenza vaccine to characterize lymphocyte-specific miRNA expression (in purified B cells, CD4+ T cells, CD8+ T cells, and NK cells) and its effect on influenza vaccine-induced immune outcomes (hemagglutination inhibition antibody titers/HAI, viral neutralizing antibody titers /VNA, and memory B cell ELISPOT). Overall, we observed relatively stable miRNA expression before and after influenza vaccination. Statistical analysis uncovered three baseline miRNAs (miR-150-3p, miR-629-5p, and miR-4443) that were significantly correlated with influenza vaccine-induced immune outcomes in different cell types. Predictive modeling of influenza vaccine-induced HAI/VNA titers identified a set of specific baseline miRNAs in CD4+ T cells as factors predictive of antibody responses. A pathway enrichment analysis on the putative target genes revealed several regulated signaling pathways and functions: TGF-β signaling, PI3K-Akt signaling, p53 signaling, MAPK signaling, TNF signaling, and C-type lectin receptor signaling, as well as cell adhesion and adherens junctions, and antiviral host response. In conclusion, our study offers evidence for the role of epigenetic modification (miRNAs) on influenza vaccine-induced immunity. After validation, identified miRNAs may serve as potential biomarkers of immune response after influenza vaccination.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vaccine
Vaccine 医学-免疫学
CiteScore
8.70
自引率
5.50%
发文量
992
审稿时长
131 days
期刊介绍: Vaccine is unique in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. The submission categories as given in the Guide for Authors indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信