Orbital magnetic susceptibility of multifold fermions

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
D.A. Pshenay-Severin , A.T. Burkov
{"title":"Orbital magnetic susceptibility of multifold fermions","authors":"D.A. Pshenay-Severin ,&nbsp;A.T. Burkov","doi":"10.1016/j.physb.2025.417136","DOIUrl":null,"url":null,"abstract":"<div><div>Topological semimetals are intensively studied in recent years. Besides the well known Weyl and Dirac semimetals, some materials possess nodes with linear crossing of multiple bands. Low energy excitations around these nodes are called multifold fermions and can be described by <span><math><mrow><mi>k</mi><mi>⋅</mi><mi>p</mi></mrow></math></span> Hamiltonian with pseudospin greater than 1/2. In the present work we investigate the contribution of these states into orbital magnetic susceptibility <span><math><mi>χ</mi></math></span>. We have found that, similarly to Weyl semimetals, the dependence of susceptibility on chemical potential <span><math><mi>μ</mi></math></span> shows an extremum when <span><math><mi>μ</mi></math></span> is close to the band crossing energy. In the case of half-integer pseudospin, this extremum is a minimum and the susceptibility is negative (diamagnetic). While in the case of integer pseudospin, the susceptibility is large and positive (paramagnetic) due to the contribution of dispersionless band, corresponding to zero pseudospin projection. This leads also to nonmonotonic temperature dependence of <span><math><mi>χ</mi></math></span>. As an example, we considered the case of cobalt monosilicide, where the states near the <span><math><mi>Γ</mi></math></span> point correspond to pseudospin 1 without spin-orbital interaction, and to a combination of Weyl node and pseudospin-3/2 states taking into account spin-orbit coupling.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"706 ","pages":"Article 417136"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625002534","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Topological semimetals are intensively studied in recent years. Besides the well known Weyl and Dirac semimetals, some materials possess nodes with linear crossing of multiple bands. Low energy excitations around these nodes are called multifold fermions and can be described by kp Hamiltonian with pseudospin greater than 1/2. In the present work we investigate the contribution of these states into orbital magnetic susceptibility χ. We have found that, similarly to Weyl semimetals, the dependence of susceptibility on chemical potential μ shows an extremum when μ is close to the band crossing energy. In the case of half-integer pseudospin, this extremum is a minimum and the susceptibility is negative (diamagnetic). While in the case of integer pseudospin, the susceptibility is large and positive (paramagnetic) due to the contribution of dispersionless band, corresponding to zero pseudospin projection. This leads also to nonmonotonic temperature dependence of χ. As an example, we considered the case of cobalt monosilicide, where the states near the Γ point correspond to pseudospin 1 without spin-orbital interaction, and to a combination of Weyl node and pseudospin-3/2 states taking into account spin-orbit coupling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信