Bingyu Zhao , Ben Wang , Qi Zhang , Chang Song , Hongdi Chu , Honggang Yin
{"title":"Friction reduction mechanism on the grinding interface during nanofluid minimum quantity lubrication grinding FRP","authors":"Bingyu Zhao , Ben Wang , Qi Zhang , Chang Song , Hongdi Chu , Honggang Yin","doi":"10.1016/j.wear.2025.206021","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber-reinforced resin matrix composites (FRP) are highly abrasive, and there is strong friction between the fibers and the abrasive grain during the grinding process. Nanofluid minimum quantity lubrication (NMQL) is an excellent lubrication technology that can significantly reduce the friction force. To investigate the lubrication performance of different nanoparticles, this study analyzed the friction reduction mechanism of tubular, layered, hexahedral, and spherical nanoparticles on the grinding interface based on tribological theory. Secondly, CNTs, MoS<sub>2</sub>, SiC, CuO, and Al<sub>2</sub>O<sub>3</sub> were selected to represent tubular, laminar, hexahedral, and spherical nanoparticles for grinding experiments to verify the validity of this mechanism. The results showed that the grinding forces F<sub>n</sub>, F<sub>t</sub>, and F<sub>r</sub> were reduced by 86.7 %, 68.9 %, and 81.2 %, respectively, in the NMQL-Al<sub>2</sub>O<sub>3</sub> condition compared to the dry grinding condition. The micro morphology of the grinding surface showed that the fiber damage was the lowest under the NMQL-Al<sub>2</sub>O<sub>3</sub> condition. Sa, Sz, and Sq were reduced by 62.9 %, 50.5 %, and 57.8 % under NMQL-Al<sub>2</sub>O<sub>3</sub> compared to dry grinding conditions. These results show that high-hardness spherical nanoparticles (Al<sub>2</sub>O<sub>3</sub>) are beneficial in reducing the friction, have better lubrication performance, and can significantly reduce fiber wear during the FRP grinding process.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"572 ","pages":"Article 206021"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004316482500290X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fiber-reinforced resin matrix composites (FRP) are highly abrasive, and there is strong friction between the fibers and the abrasive grain during the grinding process. Nanofluid minimum quantity lubrication (NMQL) is an excellent lubrication technology that can significantly reduce the friction force. To investigate the lubrication performance of different nanoparticles, this study analyzed the friction reduction mechanism of tubular, layered, hexahedral, and spherical nanoparticles on the grinding interface based on tribological theory. Secondly, CNTs, MoS2, SiC, CuO, and Al2O3 were selected to represent tubular, laminar, hexahedral, and spherical nanoparticles for grinding experiments to verify the validity of this mechanism. The results showed that the grinding forces Fn, Ft, and Fr were reduced by 86.7 %, 68.9 %, and 81.2 %, respectively, in the NMQL-Al2O3 condition compared to the dry grinding condition. The micro morphology of the grinding surface showed that the fiber damage was the lowest under the NMQL-Al2O3 condition. Sa, Sz, and Sq were reduced by 62.9 %, 50.5 %, and 57.8 % under NMQL-Al2O3 compared to dry grinding conditions. These results show that high-hardness spherical nanoparticles (Al2O3) are beneficial in reducing the friction, have better lubrication performance, and can significantly reduce fiber wear during the FRP grinding process.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.