The effect of soil on the efficacy of a nematode-based biopesticide of slugs

IF 3.7 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kerry McDonald-Howard , Christopher D. Williams , Hayley Jones , Robbie Rae
{"title":"The effect of soil on the efficacy of a nematode-based biopesticide of slugs","authors":"Kerry McDonald-Howard ,&nbsp;Christopher D. Williams ,&nbsp;Hayley Jones ,&nbsp;Robbie Rae","doi":"10.1016/j.biocontrol.2025.105751","DOIUrl":null,"url":null,"abstract":"<div><div>Several slug species are serious pests of agriculture and are difficult to control. One popular control method is the nematode <em>Phasmarhabditis hermaphrodita,</em> which has been used in slug control for &gt; 25 years. However, there are reports of it failing to reduce slug numbers and damage in the field for unknown reasons. This may be due to lack of knowledge about how <em>P. hermaphrodita</em> performs when applied to different soils<em>.</em> We therefore assessed the survival, movement and pathogenicity of <em>P. hermaphrodita</em> infective juveniles (IJs) when added to six different soils (compost with and without peat, clay loam, loam, sandy loam and sandy soil). The soils were either frozen or autoclaved before use to eradicate resident nematodes prior to the experiment. <em>P. hermaphrodita</em> survived best in autoclaved compost without peat and in experiments with frozen soils, compost with and without peat was best. Survival of <em>P. hermaphrodita</em> was similar in other soils. Interestingly, in peat-free compost <em>P. hermaphrodita</em> reproduced prolifically, which may affect the long-term success of the nematode in the field as other life stages, apart from the IJ stage, cannot infect slugs. In infection experiments we found <em>P. hermaphrodita</em> added to compost with peat killed slugs faster than nematodes added to a sandy clay loam or sandy soil. In movement experiments, the nematodes remained within 3 cm of the application point in each soil. In summary, soil type severely affects <em>P. hermaphrodita</em> survival<em>,</em> and the ability to kill slugs; therefore it should be assessed by farmers and gardeners before use.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"204 ","pages":"Article 105751"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964425000611","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several slug species are serious pests of agriculture and are difficult to control. One popular control method is the nematode Phasmarhabditis hermaphrodita, which has been used in slug control for > 25 years. However, there are reports of it failing to reduce slug numbers and damage in the field for unknown reasons. This may be due to lack of knowledge about how P. hermaphrodita performs when applied to different soils. We therefore assessed the survival, movement and pathogenicity of P. hermaphrodita infective juveniles (IJs) when added to six different soils (compost with and without peat, clay loam, loam, sandy loam and sandy soil). The soils were either frozen or autoclaved before use to eradicate resident nematodes prior to the experiment. P. hermaphrodita survived best in autoclaved compost without peat and in experiments with frozen soils, compost with and without peat was best. Survival of P. hermaphrodita was similar in other soils. Interestingly, in peat-free compost P. hermaphrodita reproduced prolifically, which may affect the long-term success of the nematode in the field as other life stages, apart from the IJ stage, cannot infect slugs. In infection experiments we found P. hermaphrodita added to compost with peat killed slugs faster than nematodes added to a sandy clay loam or sandy soil. In movement experiments, the nematodes remained within 3 cm of the application point in each soil. In summary, soil type severely affects P. hermaphrodita survival, and the ability to kill slugs; therefore it should be assessed by farmers and gardeners before use.

Abstract Image

土壤对基于线虫的蛞蝓生物杀虫剂药效的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Control
Biological Control 生物-昆虫学
CiteScore
7.40
自引率
7.10%
发文量
220
审稿时长
63 days
期刊介绍: Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents. The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信