Magnetic solid-phase extraction of Sudan dyes from beverages-coated magnetite/silica materials

Yugao Guo , Xiaoxiao Niu , Boyu Li , Pei Liu , Youqing Sun , Sumin Lu
{"title":"Magnetic solid-phase extraction of Sudan dyes from beverages-coated magnetite/silica materials","authors":"Yugao Guo ,&nbsp;Xiaoxiao Niu ,&nbsp;Boyu Li ,&nbsp;Pei Liu ,&nbsp;Youqing Sun ,&nbsp;Sumin Lu","doi":"10.1016/j.jpbao.2025.100073","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a polydopamine-coated magnetite/silica composite material (Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>/PDA) was successfully synthesized and characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). By integrating EM-MSPE with high-performance liquid chromatography (HPLC), a novel EM-MSPE-HPLC method was established for the sensitive and accurate determination of Sudan I-IV dyes. Key experimental parameters, such as adsorbent dosage, pH, inorganic salt concentration, adsorption time, voltage, eluent type, eluent volume, and desorption time, were systematically investigated and optimized. Under optimal conditions, the method demonstrated excellent linearity (R² &gt; 0.999) within a concentration range of 5–1000 μg L⁻¹, with limits of detection (LODs) ranging from 0.11 to 0.17 μg L⁻¹. The recoveries of Sudan dyes in real samples ranged from 89.1 % to 101.9 %, with relative standard deviations (RSDs) between 0.3 % and 3.6 %. Furthermore, the Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>/PDA adsorbent exhibited consistent performance over ten consecutive extraction cycles without significant loss in recovery efficiency. These findings demonstrate that the proposed method is accurate, reliable, and reproducible for the simultaneous determination of Sudan dyes in complex beverage matrices, offering a robust analytical approach for food safety applications.</div></div>","PeriodicalId":100822,"journal":{"name":"Journal of Pharmaceutical and Biomedical Analysis Open","volume":"5 ","pages":"Article 100073"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical and Biomedical Analysis Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949771X25000246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a polydopamine-coated magnetite/silica composite material (Fe3O4@SiO2/PDA) was successfully synthesized and characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). By integrating EM-MSPE with high-performance liquid chromatography (HPLC), a novel EM-MSPE-HPLC method was established for the sensitive and accurate determination of Sudan I-IV dyes. Key experimental parameters, such as adsorbent dosage, pH, inorganic salt concentration, adsorption time, voltage, eluent type, eluent volume, and desorption time, were systematically investigated and optimized. Under optimal conditions, the method demonstrated excellent linearity (R² > 0.999) within a concentration range of 5–1000 μg L⁻¹, with limits of detection (LODs) ranging from 0.11 to 0.17 μg L⁻¹. The recoveries of Sudan dyes in real samples ranged from 89.1 % to 101.9 %, with relative standard deviations (RSDs) between 0.3 % and 3.6 %. Furthermore, the Fe3O4@SiO2/PDA adsorbent exhibited consistent performance over ten consecutive extraction cycles without significant loss in recovery efficiency. These findings demonstrate that the proposed method is accurate, reliable, and reproducible for the simultaneous determination of Sudan dyes in complex beverage matrices, offering a robust analytical approach for food safety applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信