“Quartz crystal microbalance-based biosensor for rapid and ultrasensitive SARS-CoV-2 detection"

Sahera Saleh , Habib Alkalamouni , Karen Antar , Joe Rahme , Michel Kazan , Pierre Karam , Jit Muthuswamy , Hassan Zaraket , Massoud L. Khraiche
{"title":"“Quartz crystal microbalance-based biosensor for rapid and ultrasensitive SARS-CoV-2 detection\"","authors":"Sahera Saleh ,&nbsp;Habib Alkalamouni ,&nbsp;Karen Antar ,&nbsp;Joe Rahme ,&nbsp;Michel Kazan ,&nbsp;Pierre Karam ,&nbsp;Jit Muthuswamy ,&nbsp;Hassan Zaraket ,&nbsp;Massoud L. Khraiche","doi":"10.1016/j.jpbao.2025.100071","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 pandemic highlighted the urgent need for rapid, sensitive, and affordable diagnostic tests, especially in resource-limited settings. While RT-qPCR remains the gold standard for SARS-CoV-2 detection, it is expensive and requires specialized equipment. Antigen-based tests, though faster, lack sufficient sensitivity. Therefore, there is a pressing need for a platform that combines the rapidity of antigen tests with the sensitivity of molecular tests. In this work, we address this problem by developing a Quartz Crystal Microbalance (QCM) biosensor for the rapid detection of SARS-CoV-2 nucleocapsid proteins. We designed a QCM biosensor with polyethylene glycol (PEG)-based surface functionalization, which significantly improves sensitivity and specificity. The platform achieved a detection limit of 53.3 TCID<sub>50</sub>/mL and a sensitivity of 0.263 Hz/ TCID<sub>50</sub>/mL, with results available in approximately 15 min. Cross-reactivity tests with Influenza A demonstrated its high specificity for SARS-CoV-2. Comprehensive surface characterization using Scanning Electron Microscopy (SEM), Digital Holographic Microscopy, and Raman Spectroscopy confirmed the stability and integrity of the functionalized sensor surface. The platform is cost-effective, scalable, and designed for ease of use in resource-limited settings. This work presents the first open-source QCM biosensing platform for SARS-CoV-2 detection that combines high sensitivity, rapid results, and affordability. It offers a deployable solution for COVID-19 diagnostics, particularly in underserved regions, and is adaptable for future pandemic preparedness.</div></div>","PeriodicalId":100822,"journal":{"name":"Journal of Pharmaceutical and Biomedical Analysis Open","volume":"5 ","pages":"Article 100071"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical and Biomedical Analysis Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949771X25000222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic highlighted the urgent need for rapid, sensitive, and affordable diagnostic tests, especially in resource-limited settings. While RT-qPCR remains the gold standard for SARS-CoV-2 detection, it is expensive and requires specialized equipment. Antigen-based tests, though faster, lack sufficient sensitivity. Therefore, there is a pressing need for a platform that combines the rapidity of antigen tests with the sensitivity of molecular tests. In this work, we address this problem by developing a Quartz Crystal Microbalance (QCM) biosensor for the rapid detection of SARS-CoV-2 nucleocapsid proteins. We designed a QCM biosensor with polyethylene glycol (PEG)-based surface functionalization, which significantly improves sensitivity and specificity. The platform achieved a detection limit of 53.3 TCID50/mL and a sensitivity of 0.263 Hz/ TCID50/mL, with results available in approximately 15 min. Cross-reactivity tests with Influenza A demonstrated its high specificity for SARS-CoV-2. Comprehensive surface characterization using Scanning Electron Microscopy (SEM), Digital Holographic Microscopy, and Raman Spectroscopy confirmed the stability and integrity of the functionalized sensor surface. The platform is cost-effective, scalable, and designed for ease of use in resource-limited settings. This work presents the first open-source QCM biosensing platform for SARS-CoV-2 detection that combines high sensitivity, rapid results, and affordability. It offers a deployable solution for COVID-19 diagnostics, particularly in underserved regions, and is adaptable for future pandemic preparedness.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信