Boiling heat transfer with a microporous heating surface in a narrow gap with cover plates of different wettability

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Aqsa Rukhsar , Dani Fadda , Jungho Lee , Seung M. You
{"title":"Boiling heat transfer with a microporous heating surface in a narrow gap with cover plates of different wettability","authors":"Aqsa Rukhsar ,&nbsp;Dani Fadda ,&nbsp;Jungho Lee ,&nbsp;Seung M. You","doi":"10.1016/j.ijheatmasstransfer.2025.126956","DOIUrl":null,"url":null,"abstract":"<div><div>An experimental study on boiling heat transfer with distilled water and a copper high-temperature thermally-conductive microporous coating (Cu-HTCMC) is performed in a narrow gap of 0.64, 1, 2, 3, and 5 mm thickness with hydrophilic and hydrophobic cover plates having apparent contact angles of 11°, 70°, and 150°. The parahydrophobic nature of the microporous copper coating and the interconnected channels within the coating allow the heating surface to stay wet and the boiling heat transfer performance to significantly exceed that of an uncoated copper surface. A hydrophobic cover plate causes stratified flow in the narrow gap, while a hydrophilic cover plate causes a laterally growing bubble in the gap. Regardless of the cover plate wettability, the wall superheat follows the unconfined case without any deterioration in the narrow gap up to the dryout heat flux due to the Cu-HTCMC on the boiling surface. Furthermore, minimal reduction in the critical heat flux is observed in narrow gap boiling with a hydrophobic cover plate, but significant reduction is observed with hydrophilic cover plates. The wettability effect diminishes as the gap size ≤ 1 mm since the vapor fills the narrow gap. For such gap sizes, the heat transfer coefficient enhancement is observed at low heat flux, followed by a sudden drop when vapor fills the gap and the surface struggles to stay wet.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"244 ","pages":"Article 126956"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025002972","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An experimental study on boiling heat transfer with distilled water and a copper high-temperature thermally-conductive microporous coating (Cu-HTCMC) is performed in a narrow gap of 0.64, 1, 2, 3, and 5 mm thickness with hydrophilic and hydrophobic cover plates having apparent contact angles of 11°, 70°, and 150°. The parahydrophobic nature of the microporous copper coating and the interconnected channels within the coating allow the heating surface to stay wet and the boiling heat transfer performance to significantly exceed that of an uncoated copper surface. A hydrophobic cover plate causes stratified flow in the narrow gap, while a hydrophilic cover plate causes a laterally growing bubble in the gap. Regardless of the cover plate wettability, the wall superheat follows the unconfined case without any deterioration in the narrow gap up to the dryout heat flux due to the Cu-HTCMC on the boiling surface. Furthermore, minimal reduction in the critical heat flux is observed in narrow gap boiling with a hydrophobic cover plate, but significant reduction is observed with hydrophilic cover plates. The wettability effect diminishes as the gap size ≤ 1 mm since the vapor fills the narrow gap. For such gap sizes, the heat transfer coefficient enhancement is observed at low heat flux, followed by a sudden drop when vapor fills the gap and the surface struggles to stay wet.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信