{"title":"Modified consistent element-free Galerkin method applied to Reissner–Mindlin plates","authors":"Marcelo Silveira Pereira , Mauricio Vicente Donadon","doi":"10.1016/j.tws.2025.113185","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the solution of static, modal, buckling and aeroelastic analyses associated with rectangular plates based on the first-order shear deformation theory (FSDT), i.e., Reissner–Mindlin plates. For this purpose, a Modified Consistent Element-Free Galerkin (MCEFG) method was applied in combination with the moving least-squares (MLS) method for the obtainment of the admissible functions. Three improvements are implemented for the application of the MCEFG method: a new weighting function that diminishes the support radius influence in the MLS method, a stable and efficient numerical integration that guarantees the consistency of the method and an imposition of essential boundary conditions that do not require the augmentation of the weak form. Comparison studies on the displacement and generalized force fields, eigenfrequencies, buckling loads and flutter velocity are performed using numerical and theoretical results that confirm the accuracy and efficiency of the proposed methodology. Finally, the study considers four boundary conditions in order to guarantee the applicability of the method in different scenarios.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113185"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125002794","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the solution of static, modal, buckling and aeroelastic analyses associated with rectangular plates based on the first-order shear deformation theory (FSDT), i.e., Reissner–Mindlin plates. For this purpose, a Modified Consistent Element-Free Galerkin (MCEFG) method was applied in combination with the moving least-squares (MLS) method for the obtainment of the admissible functions. Three improvements are implemented for the application of the MCEFG method: a new weighting function that diminishes the support radius influence in the MLS method, a stable and efficient numerical integration that guarantees the consistency of the method and an imposition of essential boundary conditions that do not require the augmentation of the weak form. Comparison studies on the displacement and generalized force fields, eigenfrequencies, buckling loads and flutter velocity are performed using numerical and theoretical results that confirm the accuracy and efficiency of the proposed methodology. Finally, the study considers four boundary conditions in order to guarantee the applicability of the method in different scenarios.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.