{"title":"Experimental study for modeling the unloading swelling behavior of Ariake clay","authors":"Zheng Fan , Yoichi Watabe","doi":"10.1016/j.sandf.2025.101594","DOIUrl":null,"url":null,"abstract":"<div><div>Due to economic and demographic growth, there is a rising demand for land reclamation in coastal cities of East and Southeast Asia. Marine clays typically play a critical role in these projects, and the deformation characteristics of marine clays become a crucial problem in terms of the quality of the subsoil conditions. The long-term loading behavior of marine clays has been studied by many researchers. However, relatively few studies have been done on the unloading behavior of these clays after preloading; and thus, the strain rate dependency on the unloading behavior of marine clays remains unclear. The aim of this study was to accumulate experimental data on the unloading behavior of marine clays and to develop a strain rate-based model for improving the accuracy of the predictions of the swelling behavior of marine clays during unloading. The authors conducted a series of constant rate of strain (CRS) consolidation tests from loading to unloading, and long-term unloading oedometer tests on Ariake clay, which is a well-known sensitive marine clay, to observe the swelling behavior during in unloading. The preloading time, corresponding to different strain rates at the end of preloading, was controlled to elucidate the effect of the stress history. Moreover, instead of parameter <em>σ′</em><sub>p</sub> (preconsolidation pressure) for the normal consolidation visco-plastic behavior, the authors developed and proposed a new visco-plastic model by introducing the concept of a plastic rebound boundary and a new parameter <em>R</em> for swelling behavior during unloading. Parameter <em>R</em> represents the normalized distance from the current stress state to the plastic rebound boundary in logarithmic effective consolidation stress. Therefore, the visco-plastic model for the behavior in the loading stage was developed into the swelling visco-plastic behavior in the unloading stage for Ariake clay. Comparing the simulation and test results, the simplified visco-plastic swelling model was found to agree well with the test results.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 3","pages":"Article 101594"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625000289","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to economic and demographic growth, there is a rising demand for land reclamation in coastal cities of East and Southeast Asia. Marine clays typically play a critical role in these projects, and the deformation characteristics of marine clays become a crucial problem in terms of the quality of the subsoil conditions. The long-term loading behavior of marine clays has been studied by many researchers. However, relatively few studies have been done on the unloading behavior of these clays after preloading; and thus, the strain rate dependency on the unloading behavior of marine clays remains unclear. The aim of this study was to accumulate experimental data on the unloading behavior of marine clays and to develop a strain rate-based model for improving the accuracy of the predictions of the swelling behavior of marine clays during unloading. The authors conducted a series of constant rate of strain (CRS) consolidation tests from loading to unloading, and long-term unloading oedometer tests on Ariake clay, which is a well-known sensitive marine clay, to observe the swelling behavior during in unloading. The preloading time, corresponding to different strain rates at the end of preloading, was controlled to elucidate the effect of the stress history. Moreover, instead of parameter σ′p (preconsolidation pressure) for the normal consolidation visco-plastic behavior, the authors developed and proposed a new visco-plastic model by introducing the concept of a plastic rebound boundary and a new parameter R for swelling behavior during unloading. Parameter R represents the normalized distance from the current stress state to the plastic rebound boundary in logarithmic effective consolidation stress. Therefore, the visco-plastic model for the behavior in the loading stage was developed into the swelling visco-plastic behavior in the unloading stage for Ariake clay. Comparing the simulation and test results, the simplified visco-plastic swelling model was found to agree well with the test results.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.