{"title":"Conditional correlation estimation and serial dependence identification","authors":"Kewin Pączek , Damian Jelito , Marcin Pitera , Agnieszka Wyłomańska","doi":"10.1016/j.cam.2025.116633","DOIUrl":null,"url":null,"abstract":"<div><div>It has been recently shown in Jaworski et al. (2024), ‘A note on the equivalence between the conditional uncorrelation and the independence of random variables’, Electronic Journal of Statistics 18(1), that one can characterize the independence of random variables via the family of conditional correlations on quantile-induced sets. This effectively shows that the localized linear measure of dependence is able to detect any form of nonlinear dependence for appropriately chosen conditioning sets. In this paper, we expand this concept, focusing on the statistical properties of conditional correlation estimators and their potential usage in serial dependence identification. In particular, we show how to estimate conditional correlations in generic and serial dependence setups, discuss key properties of the related estimators, define the conditional equivalent of the autocorrelation function, and provide a series of examples which prove that the proposed framework could be efficiently used in many practical econometric applications.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"468 ","pages":"Article 116633"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725001475","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
It has been recently shown in Jaworski et al. (2024), ‘A note on the equivalence between the conditional uncorrelation and the independence of random variables’, Electronic Journal of Statistics 18(1), that one can characterize the independence of random variables via the family of conditional correlations on quantile-induced sets. This effectively shows that the localized linear measure of dependence is able to detect any form of nonlinear dependence for appropriately chosen conditioning sets. In this paper, we expand this concept, focusing on the statistical properties of conditional correlation estimators and their potential usage in serial dependence identification. In particular, we show how to estimate conditional correlations in generic and serial dependence setups, discuss key properties of the related estimators, define the conditional equivalent of the autocorrelation function, and provide a series of examples which prove that the proposed framework could be efficiently used in many practical econometric applications.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.