Spectral properties of flipped Toeplitz matrices and computational applications

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Giovanni Barbarino , Sven-Erik Ekström , Carlo Garoni , David Meadon , Stefano Serra-Capizzano , Paris Vassalos
{"title":"Spectral properties of flipped Toeplitz matrices and computational applications","authors":"Giovanni Barbarino ,&nbsp;Sven-Erik Ekström ,&nbsp;Carlo Garoni ,&nbsp;David Meadon ,&nbsp;Stefano Serra-Capizzano ,&nbsp;Paris Vassalos","doi":"10.1016/j.amc.2025.129408","DOIUrl":null,"url":null,"abstract":"<div><div>We study the spectral properties of flipped Toeplitz matrices of the form <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Toeplitz matrix generated by the function <em>f</em> and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> exchange (or flip) matrix having 1 on the main anti-diagonal and 0 elsewhere. In particular, under suitable assumptions on <em>f</em>, we establish an alternating sign relationship between the eigenvalues of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, the eigenvalues of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, and the quasi-uniform samples of <em>f</em>. Moreover, after fine-tuning a few known theorems on Toeplitz matrices, we use them to provide localization results for the eigenvalues of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>. Our study is motivated by the convergence analysis of the minimal residual (MINRES) method for the solution of real non-symmetric Toeplitz linear systems of the form <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mi>x</mi><mo>=</mo><mi>b</mi></math></span> after pre-multiplication of both sides by <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, as suggested by Pestana and Wathen <span><span>[26]</span></span>. A selection of numerical experiments is provided to illustrate the theoretical results and to show how to use the spectral localizations for predicting the MINRES performance on linear systems with coefficient matrix <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"499 ","pages":"Article 129408"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001353","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the spectral properties of flipped Toeplitz matrices of the form Hn(f)=YnTn(f), where Tn(f) is the n×n Toeplitz matrix generated by the function f and Yn is the n×n exchange (or flip) matrix having 1 on the main anti-diagonal and 0 elsewhere. In particular, under suitable assumptions on f, we establish an alternating sign relationship between the eigenvalues of Hn(f), the eigenvalues of Tn(f), and the quasi-uniform samples of f. Moreover, after fine-tuning a few known theorems on Toeplitz matrices, we use them to provide localization results for the eigenvalues of Hn(f). Our study is motivated by the convergence analysis of the minimal residual (MINRES) method for the solution of real non-symmetric Toeplitz linear systems of the form Tn(f)x=b after pre-multiplication of both sides by Yn, as suggested by Pestana and Wathen [26]. A selection of numerical experiments is provided to illustrate the theoretical results and to show how to use the spectral localizations for predicting the MINRES performance on linear systems with coefficient matrix Hn(f).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信