Giovanni Barbarino , Sven-Erik Ekström , Carlo Garoni , David Meadon , Stefano Serra-Capizzano , Paris Vassalos
{"title":"Spectral properties of flipped Toeplitz matrices and computational applications","authors":"Giovanni Barbarino , Sven-Erik Ekström , Carlo Garoni , David Meadon , Stefano Serra-Capizzano , Paris Vassalos","doi":"10.1016/j.amc.2025.129408","DOIUrl":null,"url":null,"abstract":"<div><div>We study the spectral properties of flipped Toeplitz matrices of the form <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Toeplitz matrix generated by the function <em>f</em> and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> exchange (or flip) matrix having 1 on the main anti-diagonal and 0 elsewhere. In particular, under suitable assumptions on <em>f</em>, we establish an alternating sign relationship between the eigenvalues of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, the eigenvalues of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, and the quasi-uniform samples of <em>f</em>. Moreover, after fine-tuning a few known theorems on Toeplitz matrices, we use them to provide localization results for the eigenvalues of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>. Our study is motivated by the convergence analysis of the minimal residual (MINRES) method for the solution of real non-symmetric Toeplitz linear systems of the form <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mi>x</mi><mo>=</mo><mi>b</mi></math></span> after pre-multiplication of both sides by <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, as suggested by Pestana and Wathen <span><span>[26]</span></span>. A selection of numerical experiments is provided to illustrate the theoretical results and to show how to use the spectral localizations for predicting the MINRES performance on linear systems with coefficient matrix <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"499 ","pages":"Article 129408"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001353","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the spectral properties of flipped Toeplitz matrices of the form , where is the Toeplitz matrix generated by the function f and is the exchange (or flip) matrix having 1 on the main anti-diagonal and 0 elsewhere. In particular, under suitable assumptions on f, we establish an alternating sign relationship between the eigenvalues of , the eigenvalues of , and the quasi-uniform samples of f. Moreover, after fine-tuning a few known theorems on Toeplitz matrices, we use them to provide localization results for the eigenvalues of . Our study is motivated by the convergence analysis of the minimal residual (MINRES) method for the solution of real non-symmetric Toeplitz linear systems of the form after pre-multiplication of both sides by , as suggested by Pestana and Wathen [26]. A selection of numerical experiments is provided to illustrate the theoretical results and to show how to use the spectral localizations for predicting the MINRES performance on linear systems with coefficient matrix .
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.