A review of the performance and application of molten salt-based phase change materials in sustainable thermal energy storage at medium and high temperatures
Huihui Wang , Jun Liu , Ying Wang , Yuqiong Zhao , Guojie Zhang
{"title":"A review of the performance and application of molten salt-based phase change materials in sustainable thermal energy storage at medium and high temperatures","authors":"Huihui Wang , Jun Liu , Ying Wang , Yuqiong Zhao , Guojie Zhang","doi":"10.1016/j.apenergy.2025.125766","DOIUrl":null,"url":null,"abstract":"<div><div>Growing energy demand and environmental pollution issues are placing greater demands on sustainable thermal energy storage. Research indicates that molten salt phase change materials (MSPCMs) represent a promising alternative for thermal energy storage (TES), effectively addressing the energy supply-demand imbalance. These salts typically have a range of excellent properties, such as high energy storage density, easy availability, and minimal environmental impact. Nevertheless, the widespread application of molten salts is considerably constrained in both industrial and commercial contexts due to their low thermal conductivity (TC) and leakage problems during phase transitions. Based on this, this paper provides a comprehensive examination of the synthesis and energy conversion characteristics of molten salt composite phase change materials (CPCMs), along with the integrated utilization of solid waste materials. Additionally, the potential applications of these phase change materials (PCMs) across various domains are thoroughly explored. The study also addresses the corrosion behavior of encapsulation materials induced by molten salt-based CPCMs. The findings indicate that the development of solid waste-derived and Shape-stabilized CPCMs (SSCPCMs) offers promising solutions to mitigate these challenges. Nevertheless, it is important to acknowledge that conventional energy conversion materials are predominantly organic, and research into molten salt CPCMs remains in its nascent stages, with current applications mainly limited to photothermal and magnetocaloric energy conversion. Furthermore, while coatings technology significantly enhances the corrosion resistance of carbon steel in molten nitrate environments, there remains an urgent need for further investigation into more effective corrosion protection strategies and materials. In conclusion, this review provides valuable insights into the prospective advancement of MSPCMs and underscores the necessity for continued research in this domain to fulfill the requirements of sustainable TES systems.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"389 ","pages":"Article 125766"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925004969","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Growing energy demand and environmental pollution issues are placing greater demands on sustainable thermal energy storage. Research indicates that molten salt phase change materials (MSPCMs) represent a promising alternative for thermal energy storage (TES), effectively addressing the energy supply-demand imbalance. These salts typically have a range of excellent properties, such as high energy storage density, easy availability, and minimal environmental impact. Nevertheless, the widespread application of molten salts is considerably constrained in both industrial and commercial contexts due to their low thermal conductivity (TC) and leakage problems during phase transitions. Based on this, this paper provides a comprehensive examination of the synthesis and energy conversion characteristics of molten salt composite phase change materials (CPCMs), along with the integrated utilization of solid waste materials. Additionally, the potential applications of these phase change materials (PCMs) across various domains are thoroughly explored. The study also addresses the corrosion behavior of encapsulation materials induced by molten salt-based CPCMs. The findings indicate that the development of solid waste-derived and Shape-stabilized CPCMs (SSCPCMs) offers promising solutions to mitigate these challenges. Nevertheless, it is important to acknowledge that conventional energy conversion materials are predominantly organic, and research into molten salt CPCMs remains in its nascent stages, with current applications mainly limited to photothermal and magnetocaloric energy conversion. Furthermore, while coatings technology significantly enhances the corrosion resistance of carbon steel in molten nitrate environments, there remains an urgent need for further investigation into more effective corrosion protection strategies and materials. In conclusion, this review provides valuable insights into the prospective advancement of MSPCMs and underscores the necessity for continued research in this domain to fulfill the requirements of sustainable TES systems.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.