Carbon-aware day-ahead optimal dispatch for integrated power grid thermal systems with aggregated distributed resources

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Tong Gou , Yinliang Xu , Hongbin Sun
{"title":"Carbon-aware day-ahead optimal dispatch for integrated power grid thermal systems with aggregated distributed resources","authors":"Tong Gou ,&nbsp;Yinliang Xu ,&nbsp;Hongbin Sun","doi":"10.1016/j.apenergy.2025.125715","DOIUrl":null,"url":null,"abstract":"<div><div>The accommodation of large-scale renewable energy and distributed resources with uncertainty and variability imposes higher flexibility requirements in integrated energy systems. This article proposes a low-carbon day-ahead optimal scheduling model for the integrated power grid thermal systems. First, the network topology and safety operation constraints of the integrated power grid thermal system are considered to ensure the economical and stable operation of the system. Second, a polyhedral based thermally controllable residential load aggregation/ disaggregation method is proposed to obtain the approximate feasible region and equivalent cost parameters of the aggregator, and the uncertainty of the parameters is modeled through distributed robust chance constraints. Third, on the basis of the theory of carbon emission flow, the carbon potential of the prescheduled power grid thermal system is analyzed to guide the development of resource scheduling strategies. Method studies with different scales of integrated power grid thermal systems were conducted, and the results showed that the proposed model can reduce carbon emissions by 8.67 % and 10.71 %, respectively, while ensuring economic benefits and safety.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"389 ","pages":"Article 125715"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925004453","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The accommodation of large-scale renewable energy and distributed resources with uncertainty and variability imposes higher flexibility requirements in integrated energy systems. This article proposes a low-carbon day-ahead optimal scheduling model for the integrated power grid thermal systems. First, the network topology and safety operation constraints of the integrated power grid thermal system are considered to ensure the economical and stable operation of the system. Second, a polyhedral based thermally controllable residential load aggregation/ disaggregation method is proposed to obtain the approximate feasible region and equivalent cost parameters of the aggregator, and the uncertainty of the parameters is modeled through distributed robust chance constraints. Third, on the basis of the theory of carbon emission flow, the carbon potential of the prescheduled power grid thermal system is analyzed to guide the development of resource scheduling strategies. Method studies with different scales of integrated power grid thermal systems were conducted, and the results showed that the proposed model can reduce carbon emissions by 8.67 % and 10.71 %, respectively, while ensuring economic benefits and safety.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信