{"title":"Further results on r-Euler-Mahonian statistics","authors":"Kaimei Huang, Sherry H.F. Yan","doi":"10.1016/j.aam.2025.102882","DOIUrl":null,"url":null,"abstract":"<div><div>As natural generalizations of the descent number (<span><math><mi>des</mi></math></span>) and the major index (<span><math><mi>maj</mi></math></span>), Rawlings introduced the notions of the <em>r</em>-descent number (<span><math><mi>r</mi><mrow><mi>des</mi></mrow></math></span>) and the <em>r</em>-major index (<span><math><mi>r</mi><mrow><mi>maj</mi></mrow></math></span>) for a given positive integer <em>r</em>. A pair <span><math><mo>(</mo><msub><mrow><mi>st</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>st</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of permutation statistics is said to be <em>r</em>-Euler-Mahonian if <span><math><mo>(</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>,</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mrow><mi>des</mi></mrow><mo>,</mo><mi>r</mi><mrow><mi>maj</mi></mrow><mo>)</mo></math></span> are equidistributed over the set <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of all permutations of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. The main objective of this paper is to confirm a recent conjecture posed by Liu which asserts that <span><math><mo>(</mo><mi>g</mi><msub><mrow><mi>exc</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>den</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> is <span><math><mo>(</mo><mi>g</mi><mo>+</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-Euler-Mahonian for all positive integers <em>g</em> and <em>ℓ</em>, where <span><math><mi>g</mi><msub><mrow><mi>exc</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> denotes the <em>g</em>-gap <em>ℓ</em>-level excedance number and <span><math><mi>g</mi><msub><mrow><mi>den</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> denotes the <em>g</em>-gap <em>ℓ</em>-level Denert's statistic. This is accomplished via a bijective proof of the equidistribution of <span><math><mo>(</mo><mi>g</mi><msub><mrow><mi>exc</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>den</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mrow><mi>des</mi></mrow><mo>,</mo><mi>r</mi><mrow><mi>maj</mi></mrow><mo>)</mo></math></span> where <span><math><mi>r</mi><mo>=</mo><mi>g</mi><mo>+</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn></math></span>. Setting <span><math><mi>g</mi><mo>=</mo><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span>, our result recovers the equidistribution of <span><math><mo>(</mo><mrow><mi>des</mi></mrow><mo>,</mo><mrow><mi>maj</mi></mrow><mo>)</mo></math></span> and <span><math><mo>(</mo><mrow><mi>exc</mi></mrow><mo>,</mo><mrow><mi>den</mi></mrow><mo>)</mo></math></span>, which was first conjectured by Denert and proved by Foata and Zeilberger. Our second main result is concerned with the analogous result for <span><math><mo>(</mo><mi>g</mi><msub><mrow><mi>exc</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>den</mi></mrow><mrow><mi>g</mi><mo>+</mo><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> which states that <span><math><mo>(</mo><mi>g</mi><msub><mrow><mi>exc</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>den</mi></mrow><mrow><mi>g</mi><mo>+</mo><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> is <span><math><mo>(</mo><mi>g</mi><mo>+</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-Euler-Mahonian for all positive integers <em>g</em> and <em>ℓ</em>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102882"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000442","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
As natural generalizations of the descent number () and the major index (), Rawlings introduced the notions of the r-descent number () and the r-major index () for a given positive integer r. A pair of permutation statistics is said to be r-Euler-Mahonian if and are equidistributed over the set of all permutations of . The main objective of this paper is to confirm a recent conjecture posed by Liu which asserts that is -Euler-Mahonian for all positive integers g and ℓ, where denotes the g-gap ℓ-level excedance number and denotes the g-gap ℓ-level Denert's statistic. This is accomplished via a bijective proof of the equidistribution of and where . Setting , our result recovers the equidistribution of and , which was first conjectured by Denert and proved by Foata and Zeilberger. Our second main result is concerned with the analogous result for which states that is -Euler-Mahonian for all positive integers g and ℓ.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.