Further results on r-Euler-Mahonian statistics

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Kaimei Huang, Sherry H.F. Yan
{"title":"Further results on r-Euler-Mahonian statistics","authors":"Kaimei Huang,&nbsp;Sherry H.F. Yan","doi":"10.1016/j.aam.2025.102882","DOIUrl":null,"url":null,"abstract":"<div><div>As natural generalizations of the descent number (<span><math><mi>des</mi></math></span>) and the major index (<span><math><mi>maj</mi></math></span>), Rawlings introduced the notions of the <em>r</em>-descent number (<span><math><mi>r</mi><mrow><mi>des</mi></mrow></math></span>) and the <em>r</em>-major index (<span><math><mi>r</mi><mrow><mi>maj</mi></mrow></math></span>) for a given positive integer <em>r</em>. A pair <span><math><mo>(</mo><msub><mrow><mi>st</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>st</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of permutation statistics is said to be <em>r</em>-Euler-Mahonian if <span><math><mo>(</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>,</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mrow><mi>des</mi></mrow><mo>,</mo><mi>r</mi><mrow><mi>maj</mi></mrow><mo>)</mo></math></span> are equidistributed over the set <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of all permutations of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. The main objective of this paper is to confirm a recent conjecture posed by Liu which asserts that <span><math><mo>(</mo><mi>g</mi><msub><mrow><mi>exc</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>den</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> is <span><math><mo>(</mo><mi>g</mi><mo>+</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-Euler-Mahonian for all positive integers <em>g</em> and <em>ℓ</em>, where <span><math><mi>g</mi><msub><mrow><mi>exc</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> denotes the <em>g</em>-gap <em>ℓ</em>-level excedance number and <span><math><mi>g</mi><msub><mrow><mi>den</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> denotes the <em>g</em>-gap <em>ℓ</em>-level Denert's statistic. This is accomplished via a bijective proof of the equidistribution of <span><math><mo>(</mo><mi>g</mi><msub><mrow><mi>exc</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>den</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>r</mi><mrow><mi>des</mi></mrow><mo>,</mo><mi>r</mi><mrow><mi>maj</mi></mrow><mo>)</mo></math></span> where <span><math><mi>r</mi><mo>=</mo><mi>g</mi><mo>+</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn></math></span>. Setting <span><math><mi>g</mi><mo>=</mo><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span>, our result recovers the equidistribution of <span><math><mo>(</mo><mrow><mi>des</mi></mrow><mo>,</mo><mrow><mi>maj</mi></mrow><mo>)</mo></math></span> and <span><math><mo>(</mo><mrow><mi>exc</mi></mrow><mo>,</mo><mrow><mi>den</mi></mrow><mo>)</mo></math></span>, which was first conjectured by Denert and proved by Foata and Zeilberger. Our second main result is concerned with the analogous result for <span><math><mo>(</mo><mi>g</mi><msub><mrow><mi>exc</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>den</mi></mrow><mrow><mi>g</mi><mo>+</mo><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> which states that <span><math><mo>(</mo><mi>g</mi><msub><mrow><mi>exc</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>den</mi></mrow><mrow><mi>g</mi><mo>+</mo><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> is <span><math><mo>(</mo><mi>g</mi><mo>+</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-Euler-Mahonian for all positive integers <em>g</em> and <em>ℓ</em>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102882"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000442","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

As natural generalizations of the descent number (des) and the major index (maj), Rawlings introduced the notions of the r-descent number (rdes) and the r-major index (rmaj) for a given positive integer r. A pair (st1,st2) of permutation statistics is said to be r-Euler-Mahonian if (st1,st2) and (rdes,rmaj) are equidistributed over the set Sn of all permutations of {1,2,,n}. The main objective of this paper is to confirm a recent conjecture posed by Liu which asserts that (gexc,gden) is (g+1)-Euler-Mahonian for all positive integers g and , where gexc denotes the g-gap -level excedance number and gden denotes the g-gap -level Denert's statistic. This is accomplished via a bijective proof of the equidistribution of (gexc,gden) and (rdes,rmaj) where r=g+1. Setting g==1, our result recovers the equidistribution of (des,maj) and (exc,den), which was first conjectured by Denert and proved by Foata and Zeilberger. Our second main result is concerned with the analogous result for (gexc,gdeng+) which states that (gexc,gdeng+) is (g+1)-Euler-Mahonian for all positive integers g and .
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信