Innovative autonomous lead-free hybrid piezo-pyroelectric sensor for real-time wear assessment of disc brake pads

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Mohammed Remaidi , Meryiem Derraz , Amine Ennawaoui , Youssef El Hmamsy , Hicham Mastouri , Chouaib Ennawaoui , Abdelowahed Hajjaji
{"title":"Innovative autonomous lead-free hybrid piezo-pyroelectric sensor for real-time wear assessment of disc brake pads","authors":"Mohammed Remaidi ,&nbsp;Meryiem Derraz ,&nbsp;Amine Ennawaoui ,&nbsp;Youssef El Hmamsy ,&nbsp;Hicham Mastouri ,&nbsp;Chouaib Ennawaoui ,&nbsp;Abdelowahed Hajjaji","doi":"10.1016/j.rineng.2025.104617","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the capability of a autonomious sensor that uses piezoelectric and pyroelectric effects to detect wear on a pad. Analysis of the pressure exerted on the pad and the thermal power generated by friction describes variations in mechanical and thermal stresses at the surface of smart materials, influenced by velocity (v<sub>0</sub>), deceleration (a<sub>0</sub>) and pad thickness (e<span><math><msub><mrow></mrow><mrow><mi>p</mi><mi>a</mi><mi>d</mi></mrow></msub></math></span>). Energy conversion material is bismuth titanate (BiT). A numerical model based on finite element analysis (FEA) correlates thermomechanical stresses with piezoelectric and pyroelectric conversions. The results demonstrate that a pressure down to -8 MPa with a deceleration of -10 m/s<sup>2</sup> induces a piezoelectric response of 9.5 V. BiT's electrical response varies according to pressure, enabling its estimation and control of the thermal effect. An increase in initial velocity amplifies BiT's electrical response, while a pyroelectric potential of 40 V is reached with a velocity of 50 m/s and a deceleration of -10 m/s<sup>2</sup>. By varying the pad thickness from 3 to 15 mm, the pyroelectric response gradually decreases. Energy harvesting comprises a portion dissipated by the acquisition system and a portion stored to power the data-processing system, thus guaranteeing the sensor's autonomy.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"26 ","pages":"Article 104617"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025006942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the capability of a autonomious sensor that uses piezoelectric and pyroelectric effects to detect wear on a pad. Analysis of the pressure exerted on the pad and the thermal power generated by friction describes variations in mechanical and thermal stresses at the surface of smart materials, influenced by velocity (v0), deceleration (a0) and pad thickness (epad). Energy conversion material is bismuth titanate (BiT). A numerical model based on finite element analysis (FEA) correlates thermomechanical stresses with piezoelectric and pyroelectric conversions. The results demonstrate that a pressure down to -8 MPa with a deceleration of -10 m/s2 induces a piezoelectric response of 9.5 V. BiT's electrical response varies according to pressure, enabling its estimation and control of the thermal effect. An increase in initial velocity amplifies BiT's electrical response, while a pyroelectric potential of 40 V is reached with a velocity of 50 m/s and a deceleration of -10 m/s2. By varying the pad thickness from 3 to 15 mm, the pyroelectric response gradually decreases. Energy harvesting comprises a portion dissipated by the acquisition system and a portion stored to power the data-processing system, thus guaranteeing the sensor's autonomy.

Abstract Image

创新的自主无铅混合压电热释电传感器,用于盘式刹车片的实时磨损评估
本文研究了一种利用压电和热释电效应来检测衬垫磨损的自主传感器的能力。对衬垫施加的压力和摩擦产生的热功率的分析描述了智能材料表面的机械和热应力的变化,受速度(v0)、减速(a0)和衬垫厚度(epad)的影响。能量转换材料为钛酸铋(BiT)。基于有限元分析(FEA)的数值模型将热机械应力与压电和热释电转换联系起来。结果表明,当压力降至-8 MPa,减速速度为-10 m/s2时,压电响应为9.5 V。BiT的电响应随压力的变化而变化,从而能够估计和控制热效应。初始速度的增加放大了BiT的电响应,而当速度为50 m/s,减速为-10 m/s2时,热释电电位达到40 V。随着衬垫厚度从3 ~ 15 mm的变化,热释电响应逐渐减小。能量收集包括由采集系统耗散的部分和存储用于为数据处理系统供电的部分,从而保证传感器的自主性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信