Chaitra N. Mallannavar , S. Sujith , Shrinidhi D. Patil , Sanjeev P. Maradur , Ganapati V. Shanbhag
{"title":"Bimetallic oxide catalysis meets silanol-enhanced synergy: A winning combination for efficient CO2 fixation by cycloaddition with styrene oxide","authors":"Chaitra N. Mallannavar , S. Sujith , Shrinidhi D. Patil , Sanjeev P. Maradur , Ganapati V. Shanbhag","doi":"10.1016/j.mcat.2025.115029","DOIUrl":null,"url":null,"abstract":"<div><div>The bimetallic oxide dispersed on silanol rich SBA-15-OH was designed for the synthesis of cyclic carbonates from epoxides and CO<sub>2</sub>. The SBA-15-OH was synthesized via desilication and active metals were loaded by sol-gel method. Pure Sn-Ni oxide with a low surface area and lesser activity was modified by dispersing it on a high surface area SBA-15-OH. The different characterization techniques such as XRD, N<sub>2</sub>-sorption, CO<sub>2</sub> and NH<sub>3</sub>-TPD, H<sub>2</sub>-TPR, SEM-EDX, TEM and XPS confirmed that the surface silanol group acts as anchoring site for the enhanced metal oxide-support interaction. Supported Sn-Ni oxide exhibited 16-fold better activity than pure Sn-Ni oxide, due to improved dispersion, which enhances the accessibility of reactants to the catalytic sites. Under the optimized reaction conditions 10Sn5Ni/SBA-15-OH gave 92.9 % styrene oxide conversion and 84.3 % selectivity for styrene carbonate. The catalyst is recyclable and the flexibility of the catalyst is tested for different epoxides with CO<sub>2.</sub></div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"579 ","pages":"Article 115029"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125002159","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The bimetallic oxide dispersed on silanol rich SBA-15-OH was designed for the synthesis of cyclic carbonates from epoxides and CO2. The SBA-15-OH was synthesized via desilication and active metals were loaded by sol-gel method. Pure Sn-Ni oxide with a low surface area and lesser activity was modified by dispersing it on a high surface area SBA-15-OH. The different characterization techniques such as XRD, N2-sorption, CO2 and NH3-TPD, H2-TPR, SEM-EDX, TEM and XPS confirmed that the surface silanol group acts as anchoring site for the enhanced metal oxide-support interaction. Supported Sn-Ni oxide exhibited 16-fold better activity than pure Sn-Ni oxide, due to improved dispersion, which enhances the accessibility of reactants to the catalytic sites. Under the optimized reaction conditions 10Sn5Ni/SBA-15-OH gave 92.9 % styrene oxide conversion and 84.3 % selectivity for styrene carbonate. The catalyst is recyclable and the flexibility of the catalyst is tested for different epoxides with CO2.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods