Construction of perylene diimide supramolecular polymers: Study of photocatalytic reduction conversion from sulfoxide to thioether

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yu-Song Bi , Cheng-Long Xin , Rong-Zhen Zhang , Hui Liu , Ling-Bao Xing
{"title":"Construction of perylene diimide supramolecular polymers: Study of photocatalytic reduction conversion from sulfoxide to thioether","authors":"Yu-Song Bi ,&nbsp;Cheng-Long Xin ,&nbsp;Rong-Zhen Zhang ,&nbsp;Hui Liu ,&nbsp;Ling-Bao Xing","doi":"10.1016/j.mcat.2025.115041","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring the redox window of current photoredox catalysis is a continuous task due to the intrinsic constraints of the technology. In this study, we present a novel supramolecular polymer PDI-CB[8] composed of perylene diimide derivative (PDI) and cucurbit[8]uril (CB[8]) through host-guest interactions, which can stabilize the excited states of PDI* and PDI radical anions (PDI<sup>•−</sup>), resulting in a highly reducing photocatalytic unit PDI-CB[8]<sup>•−*</sup> that can efficiently reduce inert sulfoxide to thioether by direct reduction. The supramolecular polymer approach successfully addresses the conventional energy limitations in photoredox catalysis. By exploiting higher-energy excitated illumination of PDI-CB[8], the efficient reduction of unactivated S<img>O double bonds on various substrates was achieved, demonstrating the adaptable usefulness of this method in synthetic chemistry applications.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"579 ","pages":"Article 115041"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125002275","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring the redox window of current photoredox catalysis is a continuous task due to the intrinsic constraints of the technology. In this study, we present a novel supramolecular polymer PDI-CB[8] composed of perylene diimide derivative (PDI) and cucurbit[8]uril (CB[8]) through host-guest interactions, which can stabilize the excited states of PDI* and PDI radical anions (PDI•−), resulting in a highly reducing photocatalytic unit PDI-CB[8]•−* that can efficiently reduce inert sulfoxide to thioether by direct reduction. The supramolecular polymer approach successfully addresses the conventional energy limitations in photoredox catalysis. By exploiting higher-energy excitated illumination of PDI-CB[8], the efficient reduction of unactivated SO double bonds on various substrates was achieved, demonstrating the adaptable usefulness of this method in synthetic chemistry applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信