Fabrication of excellent bifunctional electrocatalyst FeNi-LDH@L-NiCoP using ZIF as a sacrifice template for alkaline electrolysis of water

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Boxuan Zhang , Jinxing Cui , Zhifang Li , Changlong Yang , Weiwei Dong , Ke Li
{"title":"Fabrication of excellent bifunctional electrocatalyst FeNi-LDH@L-NiCoP using ZIF as a sacrifice template for alkaline electrolysis of water","authors":"Boxuan Zhang ,&nbsp;Jinxing Cui ,&nbsp;Zhifang Li ,&nbsp;Changlong Yang ,&nbsp;Weiwei Dong ,&nbsp;Ke Li","doi":"10.1016/j.mcat.2025.115052","DOIUrl":null,"url":null,"abstract":"<div><div>The key to generating hydrogen by electrolysis of water is to design the low-cost and high-catalytic activity catalyst. In this paper, FeNi-Layered Double Hydroxide@L-NCP/nickel foam (FeNi-LDH@L-NCP/NF) is prepared using leaf-like zeolitic imidazolate framework (L-Co-ZIF) as the precursor, phosphating to produce NiCoP (denoted as L-NCP) and then growing FeNi layered double hydroxide (FeNi-LDH) through a hydrothermal crystallization method. FeNi-LDH@L-NCP/NF is an exceptional catalyst for hydrogen evolution reaction (HER) as well as oxygen evolution reaction (OER). It shows the low overpotential of FeNi-LDH@L-NCP/NF and the values are 106 and 220 mV at 10 mA·cm<sup>-2</sup> in 1 M KOH for HER and OER, respectively. This is because the more ordered L-NCP is formed due to the role of the ZIF templates, which favors rapid charge transfer between the electrolyte and the electrode, thereby promoting its catalytic performance. The synergistic effect of FeNi-LDH and L-NCP also contributes to activity.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"579 ","pages":"Article 115052"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246882312500238X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The key to generating hydrogen by electrolysis of water is to design the low-cost and high-catalytic activity catalyst. In this paper, FeNi-Layered Double Hydroxide@L-NCP/nickel foam (FeNi-LDH@L-NCP/NF) is prepared using leaf-like zeolitic imidazolate framework (L-Co-ZIF) as the precursor, phosphating to produce NiCoP (denoted as L-NCP) and then growing FeNi layered double hydroxide (FeNi-LDH) through a hydrothermal crystallization method. FeNi-LDH@L-NCP/NF is an exceptional catalyst for hydrogen evolution reaction (HER) as well as oxygen evolution reaction (OER). It shows the low overpotential of FeNi-LDH@L-NCP/NF and the values are 106 and 220 mV at 10 mA·cm-2 in 1 M KOH for HER and OER, respectively. This is because the more ordered L-NCP is formed due to the role of the ZIF templates, which favors rapid charge transfer between the electrolyte and the electrode, thereby promoting its catalytic performance. The synergistic effect of FeNi-LDH and L-NCP also contributes to activity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信