Accelerated CO2 capture with controllable mineralisation via reactive bubble formation

Su-Ho Ahn , Duckshin Park , Bo-Sang Kim , Su-Min Lee , Mang Muan Lian , Younghee Jang , Kyunghoon Kim , Sangwon Ko , Byung-Hyun Park , Jinsik Choi , Seungkyu Shin , Junpyo Cho , Liguang Wang , Hangil Park , Jung-Ho Yun
{"title":"Accelerated CO2 capture with controllable mineralisation via reactive bubble formation","authors":"Su-Ho Ahn ,&nbsp;Duckshin Park ,&nbsp;Bo-Sang Kim ,&nbsp;Su-Min Lee ,&nbsp;Mang Muan Lian ,&nbsp;Younghee Jang ,&nbsp;Kyunghoon Kim ,&nbsp;Sangwon Ko ,&nbsp;Byung-Hyun Park ,&nbsp;Jinsik Choi ,&nbsp;Seungkyu Shin ,&nbsp;Junpyo Cho ,&nbsp;Liguang Wang ,&nbsp;Hangil Park ,&nbsp;Jung-Ho Yun","doi":"10.1016/j.ccst.2025.100394","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon Capture and Utilisation (CCU) is crucial for mitigating greenhouse gas emissions from coal-fired power plants. This study presents a bubble reactor system using sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) and frothing reagents to improve both efficiency and sustainability. Various glycol-based polymers, along with an alcohol-based surfactant widely used in the mining and minerals industry, were evaluated for their effects on carbon dioxide (CO<sub>2</sub>) bubble size and removal efficiency. The results demonstrate that the frothing reagents not only reduced bubble size but also increased foam layer thickness, significantly improving CO<sub>2</sub> removal efficiency. The thicker foam layer associated with the glycol-type polymers generates a larger interfacial area and longer gas residence time, accounting for the differences in CO<sub>2</sub> removal efficiency. Furthermore, after removing CO<sub>2</sub>, the captured CO<sub>2</sub> was mineralised into calcium carbonate (CaCO<sub>3</sub>). Notably, the calcium carbonate existed predominantly in the form of vaterite and the abundance and morphology of vaterite changed with adding one of the polymers into the CO<sub>2</sub>-loaded Na<sub>2</sub>CO<sub>3</sub> solution. This paper underscores the potential for scalable, sustainable CCU, along with the formation of valuable by-products.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100394"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277265682500034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon Capture and Utilisation (CCU) is crucial for mitigating greenhouse gas emissions from coal-fired power plants. This study presents a bubble reactor system using sodium carbonate (Na2CO3) and frothing reagents to improve both efficiency and sustainability. Various glycol-based polymers, along with an alcohol-based surfactant widely used in the mining and minerals industry, were evaluated for their effects on carbon dioxide (CO2) bubble size and removal efficiency. The results demonstrate that the frothing reagents not only reduced bubble size but also increased foam layer thickness, significantly improving CO2 removal efficiency. The thicker foam layer associated with the glycol-type polymers generates a larger interfacial area and longer gas residence time, accounting for the differences in CO2 removal efficiency. Furthermore, after removing CO2, the captured CO2 was mineralised into calcium carbonate (CaCO3). Notably, the calcium carbonate existed predominantly in the form of vaterite and the abundance and morphology of vaterite changed with adding one of the polymers into the CO2-loaded Na2CO3 solution. This paper underscores the potential for scalable, sustainable CCU, along with the formation of valuable by-products.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信