Accelerated CO2 capture with controllable mineralisation via reactive bubble formation

Su-Ho Ahn , Duckshin Park , Bo-Sang Kim , Su-Min Lee , Mang Muan Lian , Younghee Jang , Kyunghoon Kim , Sangwon Ko , Byung-Hyun Park , Jinsik Choi , Seungkyu Shin , Junpyo Cho , Liguang Wang , Hangil Park , Jung-Ho Yun
{"title":"Accelerated CO2 capture with controllable mineralisation via reactive bubble formation","authors":"Su-Ho Ahn ,&nbsp;Duckshin Park ,&nbsp;Bo-Sang Kim ,&nbsp;Su-Min Lee ,&nbsp;Mang Muan Lian ,&nbsp;Younghee Jang ,&nbsp;Kyunghoon Kim ,&nbsp;Sangwon Ko ,&nbsp;Byung-Hyun Park ,&nbsp;Jinsik Choi ,&nbsp;Seungkyu Shin ,&nbsp;Junpyo Cho ,&nbsp;Liguang Wang ,&nbsp;Hangil Park ,&nbsp;Jung-Ho Yun","doi":"10.1016/j.ccst.2025.100394","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon Capture and Utilisation (CCU) is crucial for mitigating greenhouse gas emissions from coal-fired power plants. This study presents a bubble reactor system using sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) and frothing reagents to improve both efficiency and sustainability. Various glycol-based polymers, along with an alcohol-based surfactant widely used in the mining and minerals industry, were evaluated for their effects on carbon dioxide (CO<sub>2</sub>) bubble size and removal efficiency. The results demonstrate that the frothing reagents not only reduced bubble size but also increased foam layer thickness, significantly improving CO<sub>2</sub> removal efficiency. The thicker foam layer associated with the glycol-type polymers generates a larger interfacial area and longer gas residence time, accounting for the differences in CO<sub>2</sub> removal efficiency. Furthermore, after removing CO<sub>2</sub>, the captured CO<sub>2</sub> was mineralised into calcium carbonate (CaCO<sub>3</sub>). Notably, the calcium carbonate existed predominantly in the form of vaterite and the abundance and morphology of vaterite changed with adding one of the polymers into the CO<sub>2</sub>-loaded Na<sub>2</sub>CO<sub>3</sub> solution. This paper underscores the potential for scalable, sustainable CCU, along with the formation of valuable by-products.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100394"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277265682500034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon Capture and Utilisation (CCU) is crucial for mitigating greenhouse gas emissions from coal-fired power plants. This study presents a bubble reactor system using sodium carbonate (Na2CO3) and frothing reagents to improve both efficiency and sustainability. Various glycol-based polymers, along with an alcohol-based surfactant widely used in the mining and minerals industry, were evaluated for their effects on carbon dioxide (CO2) bubble size and removal efficiency. The results demonstrate that the frothing reagents not only reduced bubble size but also increased foam layer thickness, significantly improving CO2 removal efficiency. The thicker foam layer associated with the glycol-type polymers generates a larger interfacial area and longer gas residence time, accounting for the differences in CO2 removal efficiency. Furthermore, after removing CO2, the captured CO2 was mineralised into calcium carbonate (CaCO3). Notably, the calcium carbonate existed predominantly in the form of vaterite and the abundance and morphology of vaterite changed with adding one of the polymers into the CO2-loaded Na2CO3 solution. This paper underscores the potential for scalable, sustainable CCU, along with the formation of valuable by-products.
通过反应性气泡形成的可控矿化加速CO2捕获
碳捕获和利用(CCU)对于减少燃煤电厂的温室气体排放至关重要。本研究提出了一种使用碳酸钠(Na2CO3)和起泡剂的气泡反应器系统,以提高效率和可持续性。研究了各种醇基聚合物和一种广泛用于采矿和矿物工业的醇基表面活性剂对二氧化碳气泡大小和去除效率的影响。结果表明,起泡剂不仅减小了气泡尺寸,而且增加了泡沫层厚度,显著提高了CO2脱除效率。与乙二醇型聚合物相结合的较厚的泡沫层产生较大的界面面积和较长的气体停留时间,这是CO2去除效率差异的原因。此外,在去除二氧化碳后,捕获的二氧化碳被矿化成碳酸钙(CaCO3)。值得注意的是,碳酸钙主要以vaterite的形式存在,并且在负载co2的Na2CO3溶液中加入一种聚合物会改变vaterite的丰度和形态。本文强调了可扩展的、可持续的CCU的潜力,以及有价值的副产品的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信