{"title":"The ring of perfect p-permutation bimodules for blocks with cyclic defect groups","authors":"Robert Boltje, Nariel Monteiro","doi":"10.1016/j.jalgebra.2025.02.048","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>B</em> be a block algebra of a group algebra <em>FG</em> of a finite group <em>G</em> over a field <em>F</em> of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>. This paper studies ring theoretic properties of the representation ring <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>Δ</mi></mrow></msup><mo>(</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> of perfect <em>p</em>-permutation <span><math><mo>(</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>-bimodules and properties of the <em>k</em>-algebra <span><math><mi>k</mi><msub><mrow><mo>⊗</mo></mrow><mrow><mi>Z</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>Δ</mi></mrow></msup><mo>(</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>, for a field <em>k</em>. We show that if the Cartan matrix of <em>B</em> has 1 as an elementary divisor then <span><math><mo>[</mo><mi>B</mi><mo>]</mo></math></span> is not primitive in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>Δ</mi></mrow></msup><mo>(</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>. If <em>B</em> has cyclic defect groups we determine a primitive decomposition of <span><math><mo>[</mo><mi>B</mi><mo>]</mo></math></span> in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>Δ</mi></mrow></msup><mo>(</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>. Moreover, if <em>k</em> is a field of characteristic different from <em>p</em> and <em>B</em> has cyclic defect groups of order <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> we describe <span><math><mi>k</mi><msub><mrow><mo>⊗</mo></mrow><mrow><mi>Z</mi></mrow></msub><msup><mrow><mi>T</mi></mrow><mrow><mi>Δ</mi></mrow></msup><mo>(</mo><mi>B</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> explicitly as a direct product of a matrix algebra and <em>n</em> group algebras.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"675 ","pages":"Pages 1-22"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001334","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let B be a block algebra of a group algebra FG of a finite group G over a field F of characteristic . This paper studies ring theoretic properties of the representation ring of perfect p-permutation -bimodules and properties of the k-algebra , for a field k. We show that if the Cartan matrix of B has 1 as an elementary divisor then is not primitive in . If B has cyclic defect groups we determine a primitive decomposition of in . Moreover, if k is a field of characteristic different from p and B has cyclic defect groups of order we describe explicitly as a direct product of a matrix algebra and n group algebras.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.