Entropy generation and heat transfer in MHD free convection within l-shaped cavities: A computational and AI-based approach

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Noor Zeb Khan , Neelam Tahir , A.S. Shflot , M.Y. Malik
{"title":"Entropy generation and heat transfer in MHD free convection within l-shaped cavities: A computational and AI-based approach","authors":"Noor Zeb Khan ,&nbsp;Neelam Tahir ,&nbsp;A.S. Shflot ,&nbsp;M.Y. Malik","doi":"10.1016/j.rineng.2025.104659","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines entropy generation and heat transfer in an <span>l</span>-shaped enclosure to optimize thermal system design by analyzing step aspect ratios (height vs. width). Governing equations (continuity, momentum, energy) are non-dimensionalized and solved via finite element simulations, with entropy production (thermal, viscous, total) evaluated across varying Rayleigh numbers (Ra), Hartmann number (Ha), aspect ratio (AR=h/w), and irreversibility ratios. Heat flux is predicted by an artificial neural network (ANN) that has been trained on simulation data, improving computing efficiency. As shown by previous research and grid sensitivity testing, the ANN model forecasts heat transport patterns with accuracy. These findings illustrate the usefulness of ANN in speeding up thermal research by elucidating entropy dynamics and optimizing geometric parameters, which are crucial for building energy-efficient devices. The main conclusions show that magnetic entropy generation can account for up to 44.8 % of total entropy generation under strong magnetic fields (Ha≥20). The average Nusselt number rises by 37.6 % as the Rayleigh number rises from 103 to 106, but it decreases slightly (0.25 %) under high Hartmann numbers, indicating MHD trade-offs. Kinetic energy has a 99.8 % increase with Ra, indicating convection dominance in taller geometries (h = 0.75, w = 0.25).</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"26 ","pages":"Article 104659"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025007364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines entropy generation and heat transfer in an l-shaped enclosure to optimize thermal system design by analyzing step aspect ratios (height vs. width). Governing equations (continuity, momentum, energy) are non-dimensionalized and solved via finite element simulations, with entropy production (thermal, viscous, total) evaluated across varying Rayleigh numbers (Ra), Hartmann number (Ha), aspect ratio (AR=h/w), and irreversibility ratios. Heat flux is predicted by an artificial neural network (ANN) that has been trained on simulation data, improving computing efficiency. As shown by previous research and grid sensitivity testing, the ANN model forecasts heat transport patterns with accuracy. These findings illustrate the usefulness of ANN in speeding up thermal research by elucidating entropy dynamics and optimizing geometric parameters, which are crucial for building energy-efficient devices. The main conclusions show that magnetic entropy generation can account for up to 44.8 % of total entropy generation under strong magnetic fields (Ha≥20). The average Nusselt number rises by 37.6 % as the Rayleigh number rises from 103 to 106, but it decreases slightly (0.25 %) under high Hartmann numbers, indicating MHD trade-offs. Kinetic energy has a 99.8 % increase with Ra, indicating convection dominance in taller geometries (h = 0.75, w = 0.25).
l形腔内MHD自由对流中的熵产和传热:一种基于计算和人工智能的方法
本研究通过分析台阶长径比(高度与宽度)来研究l形外壳中的熵产和传热,以优化热系统设计。控制方程(连续性、动量、能量)是无因次化的,通过有限元模拟来求解,熵产(热、粘、总)通过不同的瑞利数(Ra)、哈特曼数(Ha)、展弦比(AR=h/w)和不可逆性比来评估。利用模拟数据训练的人工神经网络对热流密度进行预测,提高了计算效率。以往的研究和网格灵敏度测试表明,人工神经网络模型能够准确地预测热输运模式。这些发现说明了人工神经网络在通过阐明熵动力学和优化几何参数来加速热研究方面的有用性,这对于构建节能设备至关重要。主要结论表明,在强磁场条件下(Ha≥20),磁熵生成可占总熵生成的44.8%。当瑞利数从103上升到106时,平均努塞尔数上升了37.6%,但在高哈特曼数下略有下降(0.25%),表明MHD权衡。随着Ra的增加,动能增加了99.8%,表明在较高的几何形状(h = 0.75, w = 0.25)中对流占上风。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信