Maximal functions of the multilinear pseudo-differentials operators

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Liang Huang
{"title":"Maximal functions of the multilinear pseudo-differentials operators","authors":"Liang Huang","doi":"10.1016/j.bulsci.2025.103618","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the maximal multilinear pseudo-differential operator with symbols <span><math><mi>σ</mi><mo>∈</mo><mi>B</mi><msubsup><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>δ</mi></mrow><mrow><mn>0</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup><mo>)</mo></math></span>, and establish the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> estimate with a sharp bound <span><math><mi>O</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow></msqrt><mo>)</mo></math></span>. Our work improves the work of Chen, Dai and Lu <span><span>[5]</span></span> by extending the symbol <em>σ</em> from the Hörmander class <span><math><mi>B</mi><msubsup><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>0</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span> to <span><math><mi>B</mi><msubsup><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>δ</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span> with <span><math><mn>0</mn><mo>≤</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></math></span>. The main tools such as localizing the maximal pseudo-differential operators and the time-frequency analysis in <span><span>[5]</span></span> may not accommodate symbols <span><math><mi>σ</mi><mo>∈</mo><mi>B</mi><msubsup><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>δ</mi></mrow><mrow><mn>0</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mn>0</mn><mo>&lt;</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></math></span>. In this work, we handle this difficulty by applying the inhomogeneous Littlewood-Paley-Stein decomposition to the space variable and using Taylor's expansion to track the size of those decomposed pieces. Then together with the ideas of using martingales, some related pointwise estimates and the good-<em>λ</em> inequality as in <span><span>[16]</span></span>, <span><span>[19]</span></span>, we will be able to obtain the boundedness with the optimal bound.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103618"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000442","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the maximal multilinear pseudo-differential operator with symbols σBS1,δ0(Rn×Rmn), and establish the Lp estimate with a sharp bound O(log(N+2)). Our work improves the work of Chen, Dai and Lu [5] by extending the symbol σ from the Hörmander class BS1,00 to BS1,δ0 with 0δ<1. The main tools such as localizing the maximal pseudo-differential operators and the time-frequency analysis in [5] may not accommodate symbols σBS1,δ0(Rn×Rmn) with 0<δ<1. In this work, we handle this difficulty by applying the inhomogeneous Littlewood-Paley-Stein decomposition to the space variable and using Taylor's expansion to track the size of those decomposed pieces. Then together with the ideas of using martingales, some related pointwise estimates and the good-λ inequality as in [16], [19], we will be able to obtain the boundedness with the optimal bound.
多线性伪微分算子的极大函数
本文考虑符号σ∈BS1,δ0(Rn×Rmn)的极大多线性伪微分算子,并建立了具有锐利界O(log (N+2))的Lp估计。我们的工作改进了Chen, Dai和Lu[5]的工作,将符号σ从Hörmander类BS1,00扩展到0≤δ<;1的BS1,δ0。[5]中的最大伪微分算子的局部化和时频分析等主要工具可能无法适应0<;δ<;1的符号σ∈BS1,δ0(Rn×Rmn)。在这项工作中,我们通过对空间变量应用非齐次littlewood - paly - stein分解并使用Taylor展开来跟踪这些分解块的大小来处理这个困难。然后结合使用鞅的思想,一些相关的点估计,以及[16],[19]中的good-λ不等式,我们就可以得到具有最优界的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信