Sparse induced subgraphs of large treewidth

IF 1.2 1区 数学 Q1 MATHEMATICS
Édouard Bonnet
{"title":"Sparse induced subgraphs of large treewidth","authors":"Édouard Bonnet","doi":"10.1016/j.jctb.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by an induced counterpart of treewidth sparsifiers (i.e., sparse subgraphs keeping the treewidth large) provided by the celebrated Grid Minor theorem of Robertson and Seymour (1986) <span><span>[22]</span></span> or by a classic result of Chekuri and Chuzhoy (2015) <span><span>[5]</span></span>, we show that for any natural numbers <em>t</em> and <em>w</em>, and real <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, there is an integer <span><math><mi>W</mi><mo>:</mo><mo>=</mo><mi>W</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>ε</mi><mo>)</mo></math></span> such that every graph with treewidth at least <em>W</em> and no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> subgraph admits a 2-connected <em>n</em>-vertex induced subgraph with treewidth at least <em>w</em> and at most <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span> edges. The induced subgraph is either a subdivided wall, or its line graph, or a spanning supergraph of a subdivided biclique. This in particular extends a result of Weißauer (2019) <span><span>[25]</span></span> that graphs of large treewidth have a large biclique subgraph or a long induced cycle.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 184-203"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562500019X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by an induced counterpart of treewidth sparsifiers (i.e., sparse subgraphs keeping the treewidth large) provided by the celebrated Grid Minor theorem of Robertson and Seymour (1986) [22] or by a classic result of Chekuri and Chuzhoy (2015) [5], we show that for any natural numbers t and w, and real ε>0, there is an integer W:=W(t,w,ε) such that every graph with treewidth at least W and no Kt,t subgraph admits a 2-connected n-vertex induced subgraph with treewidth at least w and at most (1+ε)n edges. The induced subgraph is either a subdivided wall, or its line graph, or a spanning supergraph of a subdivided biclique. This in particular extends a result of Weißauer (2019) [25] that graphs of large treewidth have a large biclique subgraph or a long induced cycle.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信