Xiaoqiao Yang, Wenjiang Feng, Donggen Li, Li Zhu, Xinxin Ma
{"title":"Uplink power control for cell-free massive MIMO URLLC systems over aging and spatially correlated channels","authors":"Xiaoqiao Yang, Wenjiang Feng, Donggen Li, Li Zhu, Xinxin Ma","doi":"10.1016/j.phycom.2025.102654","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems for ultra-reliable low-latency communication (URLLC), considering spatial correlation and pilot contamination. Closed-form expressions are derived for the uplink achievable rate under finite block length (FBL) and maximum ratio combining (MRC). To maximize the weighted sum rate for all users, a maximum power optimization problem is formulated. The original non-convex problem is transformed into a series of geometric programming (GP) problems using successive convex optimization (SCO) and logarithmic methods, which are solved iteratively. The numerical results verify the correctness of our derived closed expression for the achievable rate under the FBL. Channel aging significantly degrades the performance of CF massive MIMO URLLC systems. Moreover, the proposed maximum power allocation strategy improves the 95%-likely per-user uplink spectral efficiency (SE) compared to systems without power control, effectively mitigating the adverse effects of channel aging.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"71 ","pages":"Article 102654"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725000576","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems for ultra-reliable low-latency communication (URLLC), considering spatial correlation and pilot contamination. Closed-form expressions are derived for the uplink achievable rate under finite block length (FBL) and maximum ratio combining (MRC). To maximize the weighted sum rate for all users, a maximum power optimization problem is formulated. The original non-convex problem is transformed into a series of geometric programming (GP) problems using successive convex optimization (SCO) and logarithmic methods, which are solved iteratively. The numerical results verify the correctness of our derived closed expression for the achievable rate under the FBL. Channel aging significantly degrades the performance of CF massive MIMO URLLC systems. Moreover, the proposed maximum power allocation strategy improves the 95%-likely per-user uplink spectral efficiency (SE) compared to systems without power control, effectively mitigating the adverse effects of channel aging.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.