{"title":"A water-soluble copper(II) complex fluorescent probe for high-sensitive and selective detection of endogenous H2S","authors":"Qing Miao, Jing-Yi Yin, Yu-Xuan Wang, Chen Zhang, Si-Yue Ma, Lin-Lin Wang, Chao Wang, Guang Chen","doi":"10.1016/j.jphotochem.2025.116403","DOIUrl":null,"url":null,"abstract":"<div><div>H<sub>2</sub>S has been identified as a third gasotransmitter involved in bio-modulation pathways. However, the low concentration of endogenous H<sub>2</sub>S makes it difficult to trace and detect. In this study, a net charged and water-soluble copper(II) complex, <strong>Cu-L</strong>, is reported as an endogenous H<sub>2</sub>S detector by utilizing a fluorescence on–off–on strategy. The luminescence of ligand <strong>L</strong> (a DNS-modified DO2A derivant), which is quenched due to Cu<sup>2+</sup> coordination, can be effectively and selectively relumed within seconds in the presence of H<sub>2</sub>S. Meanwhile, <strong>Cu-L</strong> has been successfully employed for exogenous and endogenous H<sub>2</sub>S imaging and neither <strong>Cu-L</strong> nor <strong>L</strong> shows toxicity at concentrations up to 50 μM. Moreover, <strong>Cu-L</strong> can trace endogenous H<sub>2</sub>S concentration fluctuation by treating cells with different concentrations of S-propargyl-cysteine (SPRC), an endogenous H<sub>2</sub>S modulator. Therefore, <strong>Cu-L</strong> holds the potential for H<sub>2</sub>S detection both in vitro and in cell.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"466 ","pages":"Article 116403"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603025001431","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
H2S has been identified as a third gasotransmitter involved in bio-modulation pathways. However, the low concentration of endogenous H2S makes it difficult to trace and detect. In this study, a net charged and water-soluble copper(II) complex, Cu-L, is reported as an endogenous H2S detector by utilizing a fluorescence on–off–on strategy. The luminescence of ligand L (a DNS-modified DO2A derivant), which is quenched due to Cu2+ coordination, can be effectively and selectively relumed within seconds in the presence of H2S. Meanwhile, Cu-L has been successfully employed for exogenous and endogenous H2S imaging and neither Cu-L nor L shows toxicity at concentrations up to 50 μM. Moreover, Cu-L can trace endogenous H2S concentration fluctuation by treating cells with different concentrations of S-propargyl-cysteine (SPRC), an endogenous H2S modulator. Therefore, Cu-L holds the potential for H2S detection both in vitro and in cell.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.