Enhancing piled raft foundation performance in clay: Exploring the influence of cyclic lateral loading patterns, frequency, and cycles

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Sommart Swasdi , Tanan Chub-Uppakarn , Watchara Srisakul , Pattamad Panedpojaman , Worathep Sae-Long
{"title":"Enhancing piled raft foundation performance in clay: Exploring the influence of cyclic lateral loading patterns, frequency, and cycles","authors":"Sommart Swasdi ,&nbsp;Tanan Chub-Uppakarn ,&nbsp;Watchara Srisakul ,&nbsp;Pattamad Panedpojaman ,&nbsp;Worathep Sae-Long","doi":"10.1016/j.oceaneng.2025.120977","DOIUrl":null,"url":null,"abstract":"<div><div>Piled raft foundations are increasingly used in construction due to their cost efficiency, requiring fewer piles than traditional pile foundations. Their ability to withstand cyclic lateral loads, such as those from earthquakes and wind forces, is crucial for structural stability. Understanding their response under cyclic loading conditions is essential, and finite element modeling (FEM) is a valuable tool for analyzing these behaviors. A recent 3D FEM study examined the performance of piled raft foundations in clay soils, focusing on loading pattern, frequency, and number of cycles. Results showed that lateral load capacity decreased as cycle count and frequency increased, with full cyclic loading (FCL) having a more pronounced effect than half cyclic loading (HCL). The raft shared 20.57–39.07 % (HCL) and 27.68–55.13 % (FCL) of lateral loads at frequencies of 0.1–10 Hz over 20 cycles. Additionally, locked-in moments increased by 21 %, and the degradation factor ranged from 65 to 80 % for HCL and 70–90 % for FCL. These findings provide valuable insights into pile-soil interaction and foundation stability under cyclic lateral loading, ensuring more effective design strategies for structures exposed to dynamic forces. Future research should explore long-term cyclic effects to further optimize foundation performance.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"327 ","pages":"Article 120977"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825006900","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Piled raft foundations are increasingly used in construction due to their cost efficiency, requiring fewer piles than traditional pile foundations. Their ability to withstand cyclic lateral loads, such as those from earthquakes and wind forces, is crucial for structural stability. Understanding their response under cyclic loading conditions is essential, and finite element modeling (FEM) is a valuable tool for analyzing these behaviors. A recent 3D FEM study examined the performance of piled raft foundations in clay soils, focusing on loading pattern, frequency, and number of cycles. Results showed that lateral load capacity decreased as cycle count and frequency increased, with full cyclic loading (FCL) having a more pronounced effect than half cyclic loading (HCL). The raft shared 20.57–39.07 % (HCL) and 27.68–55.13 % (FCL) of lateral loads at frequencies of 0.1–10 Hz over 20 cycles. Additionally, locked-in moments increased by 21 %, and the degradation factor ranged from 65 to 80 % for HCL and 70–90 % for FCL. These findings provide valuable insights into pile-soil interaction and foundation stability under cyclic lateral loading, ensuring more effective design strategies for structures exposed to dynamic forces. Future research should explore long-term cyclic effects to further optimize foundation performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信