Hao Wang , Chao Cao , Jiyun Zhao , Mingquan Yu , Yiye Zhang
{"title":"Research on dynamic characteristics of a novel high-frequency water hydraulic proportional flow valve","authors":"Hao Wang , Chao Cao , Jiyun Zhao , Mingquan Yu , Yiye Zhang","doi":"10.1016/j.flowmeasinst.2025.102893","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately measuring the dynamic characteristics of high-pressure large-flow water hydraulic flow valves and improving their frequency response are critical challenges in water hydraulic systems. In this study, a high-pressure large-flow and high-frequency water hydraulic proportional flow valve (WHPFV) integrated an indirect displacement-based measurement method (IDMM) is proposed. The main spool employs a symmetrical cylinder cone structure, featuring a non-full circle U-shaped valve port. A low-pressure small-flow oil hydraulic servo valve is used to control the high-pressure and large-flow water hydraulic main spool. A couple mathematical model about the displacement and output flow of the main valve, as well as a main spool displacement transfer function model, are established. The effect of various parameters on the dynamic characteristics of the flow valve is studied by simulation. To demonstrate the superiority of IDMM, different dynamic behaviors of WHPFV are measured. Experimental results indicate that the WHPFV exhibits excellent dynamic characteristics with the rise time about 30 ms, and the IDMM is able to measure the dynamic performance of WHPFV effectively.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"104 ","pages":"Article 102893"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598625000858","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately measuring the dynamic characteristics of high-pressure large-flow water hydraulic flow valves and improving their frequency response are critical challenges in water hydraulic systems. In this study, a high-pressure large-flow and high-frequency water hydraulic proportional flow valve (WHPFV) integrated an indirect displacement-based measurement method (IDMM) is proposed. The main spool employs a symmetrical cylinder cone structure, featuring a non-full circle U-shaped valve port. A low-pressure small-flow oil hydraulic servo valve is used to control the high-pressure and large-flow water hydraulic main spool. A couple mathematical model about the displacement and output flow of the main valve, as well as a main spool displacement transfer function model, are established. The effect of various parameters on the dynamic characteristics of the flow valve is studied by simulation. To demonstrate the superiority of IDMM, different dynamic behaviors of WHPFV are measured. Experimental results indicate that the WHPFV exhibits excellent dynamic characteristics with the rise time about 30 ms, and the IDMM is able to measure the dynamic performance of WHPFV effectively.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.