Solar energy-powered wireless charging system for three-wheeled e-scooter applications

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Mehmet Zahid Erel , Mehmet Akif Özdemir , Mehmet Timur Aydemir
{"title":"Solar energy-powered wireless charging system for three-wheeled e-scooter applications","authors":"Mehmet Zahid Erel ,&nbsp;Mehmet Akif Özdemir ,&nbsp;Mehmet Timur Aydemir","doi":"10.1016/j.renene.2025.122933","DOIUrl":null,"url":null,"abstract":"<div><div>Wireless power transfer (WPT) is a remarkable charging technology that addresses the range limitations and complexity of light electric vehicles. This study presents a novel approach to a solar-powered WPT system designed for three-wheeled e-scooter applications. The proposed system offers compact, lightweight, and cost-effective solution with a ferrite-less structure and a series-series (SS) compensation topology, resulting in enhanced system efficiency and adaptability. The compact and efficient converters are designed to enhance performance and reduce system size. A Proportional-Integral (PI) controlled Perturb and Observe (P&amp;O) maximum power point tracking (MPPT) method is implemented to optimize energy extraction from three solar panels. The design is validated through comprehensive simulations and demonstrates a superior dynamic response over the Incremental Conductance MPPT (ICM) method. Performance tests confirm the reliability of the experimental prototype, achieving a system efficiency of 88.5 % at 300-W output power over a 100 mm transfer distance under fully aligned condition. Comparative analyses with existing solar-powered e-cycle systems highlight the proposed design's superiority in efficiency, cost-effectiveness, and adherence to safety standards. The results indicate that the proposed design enhances sustainable urban transportation by reducing carbon emissions and decreasing reliance on fossil fuels, facilitating the wider integration of renewable energy sources.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"246 ","pages":"Article 122933"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125005956","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless power transfer (WPT) is a remarkable charging technology that addresses the range limitations and complexity of light electric vehicles. This study presents a novel approach to a solar-powered WPT system designed for three-wheeled e-scooter applications. The proposed system offers compact, lightweight, and cost-effective solution with a ferrite-less structure and a series-series (SS) compensation topology, resulting in enhanced system efficiency and adaptability. The compact and efficient converters are designed to enhance performance and reduce system size. A Proportional-Integral (PI) controlled Perturb and Observe (P&O) maximum power point tracking (MPPT) method is implemented to optimize energy extraction from three solar panels. The design is validated through comprehensive simulations and demonstrates a superior dynamic response over the Incremental Conductance MPPT (ICM) method. Performance tests confirm the reliability of the experimental prototype, achieving a system efficiency of 88.5 % at 300-W output power over a 100 mm transfer distance under fully aligned condition. Comparative analyses with existing solar-powered e-cycle systems highlight the proposed design's superiority in efficiency, cost-effectiveness, and adherence to safety standards. The results indicate that the proposed design enhances sustainable urban transportation by reducing carbon emissions and decreasing reliance on fossil fuels, facilitating the wider integration of renewable energy sources.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信